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Abstract—In the domain of classification tasks, ar- summarizes the paper and shows perspectives for further
tificial neural nets (ANNs) are prominent data mining research.
methods. Paradigms like learning vector quantization
(|I-VQ)f_and Ipro':)_abilistic neural net (F’rl]\lN) ?re sluit_able Il. Classification with Artificial Neural Nets
classifiers. In this paper, new approaches of evolutionar I . . .
optimized LVQs aﬁdpPNNs argpproposed. Their classi)-/ A. Classification with Learning Machines
fication accuracy is compared with results of standard Let all relevant and measurable attributes of an
PNN and LVQ. The complex real-world scenario includes  gpyiact, e.g. a location, be combined as numerical values

planning of retail stores. Branch locations are classified . - . .
in terms of revenue and profit. Results are based on data in X. Let the the input space with objects be denoted

reflecting external infrastructure and internal aspects of ~ IN the setX={Xy,..., %} Each object belongs to a dis-
existing branches. They support decisions about establish- crete clasy € {—1;1}. A pair (X,y) is an example of our

ing, modifying or closing down a store. classification problem. We presume that it is impossible
Keywords: artificial neural networks, classification, genetic ~ to model the relationship between attribukeand class
algorithm, data mining, decision support membershipy directly, either because it is unknown,

too complex or corrupted by noise. With a sufficient
large set of examples, a machine for supervised learn-
This paper focuses on the application of evolution-ing of the mappingX — y can be incorporated. The

ary built ANNs for solving an economic real-world objective of a classification process is to modify free
classification problem. The genetic component of theparameters in order to find a specific learning machine
approach provides improved input selection in orderthat models a generalizable causal relationship of the
to achieve higher classification accuracy. For comparproblem structure from the learning data to predict
ison, manually parameterized standard LVQs, enhancegdnseen examples based on their attribute vakjeSor
LVQs and PNNs are applied, too. Locations of retail most questions of parametrization only rules of thumb
stores are classified in terms of sales volume to suppofre known. For a comprehensive discussion readers are
decisions having strong impact on large investments foteferred to e.g. [1-4]. In the following subsections we

opening a new store or closing down an existing onepropose two different neural network paradigms for
This decision on a location has long-term character an@olving classification tasks.

induces high fix costs, whereas more detailed decisions . o

on in-store design and assortment of a certain store arg- Learning Vector Quantization

more flexible. Furthermore, these decisions can more LVQ is a supervised nearest neighbor pattern clas-

easily be revised in case of an unprofitable decisionsifier. In terms of ANNs, a LVQ is a feedforward,

All decisions have impact on sales quantity and on thehetero-associative, winner-takes-all network, related t

company’s important cash flow. selforganizing maps [5]. The basic LVQ is composed
The organization of this paper is as follows. In of an input layer with one neuron per input variable,

Section ll, the classifiers LVQ and PNN in their standarda Kohonen layer with neurons learning and performing

forms are presented. In Section Ill the new combinationthe classification, and an output layer with one node for

of genetic algorithms and slightly modified LVQ and each class to be recognized. The number of the hidden

PNN algorithms is shown. The importance of fithessneurons is either predisposed by the user or dynamically

functions is discussed. The real-world problem to eval-determined by enhanced algorithms.

uate locations for retail stores and to make decisions on The weight vector of the weights between all input

the in-store design and assortment is briefly describedieurons and a hidden neurgnis called a codebook

in Section IV and formulated as classification task. Thevector (CV)W;, representing a labelled region in input

real-world scenario and computational experiments arepace. During the learning process, weights are modified

described and the main results are presented. Séction M accordance with adapting rules. The basic LVQ

I. Introduction



algorithm rewards correct classifications by moving the ~ with ¢ = @2 = HX—X}H? = (X—in)T (x—x1)
iwmner’ Wy, — the CV which is nearest_ to the present_ed N = dimension of samplé,

input vectorX — towardsX, whereas incorrect classi-
fications are punished by moving the CV in opposite
direction. Thus, presented patterns attract prototypes o0 = smoothing parameter .
of the corr_ect class. Prototyp_es of other classes are The similarity between samples is expressed by the
repelled. Since class boundaries depend on CVs, the . . . 2 )

are adjusted during the learning process. The resultiné“uad_rat'c_ Euchdean d'Staan_Xi H2' The G_au53|an
Voronoi tessellation of input space is optimal if all data nctlon_ IS typlc_ally used b_ased on experience and
within a CV's cell indeed belong to the same class. due to its easy implementation. Smoothing parameter

Classification is based on a presented sample’s vicin? 1S used fqr cont'rol of decision regions. Llarge .
ity to the CVs: a sample gets the label from thevalues resuIFln continuous, shallow, rolling regions with
nearest CV. The heuristic algorithms are based on g Iea_dlng t(_) a hyperplgne, smaller valueg cause
distance function expressing the degree of similarity]agge_q regions W'thy.ﬂo Ieadmg_ to a nearest neighbor
between presented input vector and CVs. Usually theclas5|f|er. Figure 1 |I|us.trates th'S. gffect. Hencghas
Euclidean distance is used. Therefore, the definitior{}mpact on the_generahty of decision bpundanes. For
of class boundaries by LVQ is strongly dependent on urther discussion of PNN and Parzen windows see e.g.
the distance function, the start positions of CVs, their[6’ 7,11,12,29,32]
adjustment rules and also the pre-selection of distinctive
input features.

The basic LVQ1 suffers from various shortcomings.
Various variants and extensions of the basic LVQ
algorithms have been developed to overcome them,
e.g. Kohonen’s Optimized LVQ1, LVQ2, LVQ2.1 and
LVQ3. For a comprehensive overview and also details
of LVQ, readers are referred to standard ANN literature,

%] = j ™ sample of clasy; ,

e.g. [6, 7]. More detailed information can be found in (a) smallo (b) large o
the work of Kohonen. Specialized topics are outlined Fig. 1: Different values ot leading to different
e.g. in [8,9]. An overview of statistical and neural activities and decision regions

approaches for pattern classification is given in e.g.
[10-13]. Several extensions of standard algorithms are Since we are not interested in the absolute density
suggested by various authors, see e.g. [14-25]. values but only in their proportions, the simplified

C. Probabilistic Neural Net function

The paradigm of PNN was introduced by Specht [26— fi(%) = 1 % e 9/9% \with o=g¢=|%—% HZ @
28]. A PNN implements a Bayesian classifier based on Ni & Ih2

density estimation for minimizing the risk of misclassi- b d with af f Il cl . d of th

fication. A-priori probabilitiesprob(y;) being necessary can be Uuse WIF equal tor all classes |r_13tea 0 t_e
- . ; ' traditional function [(1). A non-exponential alternative

for Bayesian classifiers are either known or can be esti;

mated directly from learning set. The PNN is aiming atfor savng computation time Is calculaurﬁTp instead

the nonparametric estimating of the necessary but ust?f e ?/%"in (2).

ally unknown class specific probability density functions ~ lllustrative interpretation of the density estimator as
fi(X) = prob(X;|y;) for each class. The PNN implements neural net helps in understandmg and enforpes accep-
the Parzen windows, based on Parzen’s one-dimensionidnce of users. The Parzen estimator PNN is a super-
approach and its multidimensional extension. [29_31]vised feedforward neural net consisting of four layers.
Parzen estimation builds probability density functions Ihe input layer is build of one neuron per input variable.
over feature space for each class. Thus, the chance Bach normalized sample is represented by a weight
given sample lies within a given class can be computedvector from all input neurons to one hidden neuron
Combined with the relative frequency of each class, dn the next pattern layer. A weight vector represents
PNN selects the most likely class for a given inputthe center of a Parzen window. In the next layer a
vector X. Using exponential Gaussian functions, then€uron for each class summarizes all outputs of the

estimation for clasy; with nj samples of this class is hidden neurons - i.e. the results of their exponential
the sum ofn; Gaussian functions: activity function — being assigned to one class. The
1 14 result is a class .sp(_acific probability density es.timation.

fi(X) = ———— Z o 9/20° (1) Outpyt neurons llndlcate the resulting class. Since each

(ZH)N/2 oNNi & learning sample is represented by a neuron of the pattern



layer, each sample is presented once in a one-pasan integer coding for determination of the number and
learning approach. Therefore, the size of the patternnitial positions of hidden neurons.

layer is determined by the number of samples. Beside We develop a new GA-LVQ, similar to LVQ-GA, and
of choice of input variables, the only degree of freedoma new GA-PNN. Within genotypes, those net parameters
is the value ofo which can easily be modified without are encoded that have to be genetically varied in order

relearning. to get net variations. For GA-LVQ and GA-PNN, the

_ B importance or influence of input variables is encoded by
IIl. Evolutionary Neural Classifiers decimal values controlling "activity’ of input neurons.
A. Genetic Learning Vector Quantization and Ge-  They affect the algorithm’s central measure of distance
netic Probabilistic Neural Net between weight vectors and input vectors by weighting

components of the Euclidean distance. Furthermore, for

Genetic algorithms (GA), a subgroup of evolution- ;
GA-PNN the o-parameter is part of the genotype. A

ary algorithms are meta-heuristics imitating the long- i . .
term optimization process of biological evolution for PNNhhas aflged nfu:nber_of h|ddenl neurorr:s deterLr\n/m(?d
solving mathematical optimization problems based uporPy tbe nl:rﬁ_dtzr ot fearning sarl?p es, V(\j’ Ie:reaéA L\?S
Darwin’s 'survival of the fittest’. Problem solutions are "UMOEr OF hidden neurons can be varied. or \5A- Q
abstract 'individuals' in a population. Each solution tr_ns number is coded directly. The |n|tlgl positions of
is evaluated by a fitness function. The fithess valueh'dd("’n neurons nearby or equall to _Iearnlng patte_ms_ are
expresses survivability of a solution, i.e. the probaypilit gncpded by a rar)dom seed with influence on initial-
of being a member of the next population and gener—Izatlon Process. Fmer parar_neters of LVQ.’ €.g. ngmber
ating "children’ with similar characteristics by handing of learning iterations, learning rate or window width,

down genetic information via evolutionary mechanisms®&" b_e erlco_(:l_ﬁd pnntgpallic/, btUt tare not u_sed tm 01|J|r
like reproduction, variation and selection, respectively XPEMMENtS. The number of output neurons 1S externally

Genotypes are varied not only by mutation of genesdet_ermined by the number of cl_asses. A.bi_nary encoding
within a single chromosome but also by crossing over,Of input neurons allows only binary decisions, whether

combining characteristics of two solutions in order to an Inpqt valtge IS USG? _:‘%r C(;Ias_SIfchatlon d— thg |In%ut
get two new solutions. In conjunction with neural nets, N€Uron IS active —ornot. The decimal encoding includes

GAs can be used for optimization of a net's weight a}nd r_efines the rough bir_1ary coding. It allows gr"_"d“a‘
matrix, the topology or the net parameters, or for deter{oN implemented by weighting the values of an input

mination of the most reasonable input data. The codin eature for calculating the distance, the crucial factor fo
of the problem into a genetic representati.on e.g. th he results of distance based classifiers. For each input

sequence of the phenotype’s parameters on a genotyp'é“?uroni a decimal weightl; with 0< ¢ <1 is encoded

is crucial to the performance of the GA (see e.g. [33—0n a gene. A rough graduation seems to be sufficient,

35] for an overview and more detailed criteria for &9- ¥i € {0:02505,075,1}, yi € {0;0.1;...;0.9,1}

efficient promising GA approaches, e.g. completeness,c,)r even finer. Withy;  {0;1}, the decimal coding

compactness and short schemata). IS gquivalen_t to binary coding. Thi; .relevan.wce weight

The GA-based development of ANNs is an itera- ¢i is used in calculation of a modified weightég-
tive process. A net is constructed by transferring thenorm |l.[13 (X = +1/31 ¢ The typically used
genotype’s genetic code into a phenotype, i.e. a neurdfuclidean distanceg: is substituted by a weighted
net. After learning (and cross-validation if appropri- Euclidean distancep, between two vectors and b
ate), a net is evaluated by a fitness function. Basedising these relevance weights:

on this quality information, genetic operations build N
a new population of nets, which are trained, tested ¢ (db) = ||a_B||‘2”:+1/Zl(a4 — b))%
and evaluated again. Thus, the entire learning process i=
can be seen as subdivided into a microscopic cycleg, = ¢ is valid for ¢ = 1. The -weighting of feature
of net's learning and a macroscopic evolutionary onei influences the feature’s impact on the distance by
The iterative learning process of ANNs itself is a part shortening its distance component more (with low factor
of the entire development process for ANNSs, startingys) or less (with high factow).
from problem modelling and ending at application and Genetic operators are one- or two-point-crossover
maintenance of a net [36]. and mutation. Crossover is only applied to the chro-
Combinations of GAs and LVQ can be found e.g. asmosome that encodes the input neurons in order to get
G-LVQ in [37] or as LVQ-GA in [38]. G-LVQ aims at only genotypes that lead to valid, applicable phenotypes.
an improvement of number and initial position of hidden Furthermore, this gene section can also be varied by
neurons for optimizing classification accuracy, net’s sizemutation of a single gene, inversion of a gene sequence
and data representation separately. LVQ-GA uses ar exchange of two genes. Those genes, that encode
binary gene representation for input data selection, anthe number of hidden neurons and the initialization



parameter, or the value af respectively, are varied by Capability of the nets and the fitness function can be
mutation only, i.e. adding or subtracting a value within evaluated graphically. Results are sorted in descending
a valid range. A high rate for crossover and a low rateorder of the fithess value (in case of maximizing fitness).
for mutation are recommended. The separate charting of fitness values or classification
A destabilization is implemented for support of au- rates for learning, validation and generalization data
tomatization. It interrupts an optimum search being toosets in a two-dimensional scatter diagram allows for
local and makes the GA more flexible. Here, destabi-evaluation of correlation between the fitness used to
lization means death of accidentally selected individu-control the evolutionary process and the fithess for
als and replacement with accidentally constructed newnknown 'real’ data. Ideally, all results are rudimentary
ones. It occurs if a critical fraction of identical or simila proportional (see s-curve in Fig. 2(a)). A net with
individuals exists within a population. The number of high fitness value also yields a satisfactory result for
individuals to be taken into the new population canunknown data. Hence, it can be reasonably selected for
be controlled by a rate of survival. A rate of null is real application. Fig. 2(b) shows the contrast: deriving

equivalent to a restart of an experiment. a good generalization result from a high fitness is
_ _ impossible. Nets with good results in application are not
B. Fitness Function preferred systematically within the evolutionary process

The fitness function is the crucial factor for evalua- A selected net is more or less arbitrarily good or poor.
tion and evolution of neural nets providing satisfactory
and stable results in real-world applications. A fithess
function should favor ANNs with satisfactory general-
ization ability without using generalization data in order
to select useful nets systematically instead of acciden-
tally. Furthermore, the fitness function should represent
the user's objective. In conjunction with ANNSs, it = —
allows for evaluation and control of the superordinated (@) ideal distributions  (b) poor generalization and/or

. . . improper fithess function
evolutionary learning process, thus enhancing the goals
nets’ algorithms are aiming at. The mean classification Fig. 2: Validation and corresponding generalization
rate MCR) may be sufficient for some classification
tasks. Taklng misclassification costs into account seems The simp|est criterion for selection of parents is the
to be more versatile and also realistic (see e.g. [3%itness value of a single net. Alternatively, a group of
with application of asymmetric costs for time series pre-some LVQs differing in their initialization value only
diction). A fitness functiorF for three-class-problems can be considered in order to make evaluation more
can be e.g. one of the following exemplary ones (withindependent from the LVQ's initialization. The group’s
ny~ as number of correctly classified pattern of clgss fitness can be calculated as arithmetic mean of the single
my as number of all patterns belonging to clgsand  yalues of each LVQ. For a focus more on the impact
CR,=ny/my), applied to a learning subset (or better aof a certain initialization value, only the best fitness
hold-out subset) of data: within a group can be used as selection criterion. Time
consuming computations for different initializations can

fitness (e.g. average classification rate) fitness (e.g. average classification rate)
—— validation data —— validation data
@ generalization data @ generalization data

F=MCR=(CR +CR+CRy)/3 ) pe supported well by parallel implementation of the
F=CR-CRsor/ . (4)  algorithms (see next Sett. III-C). The selection itself is
F=CR-CR-CRsor ... (5) implemented as the multi-purpose tournament selection.
F — MCR'eam. mcRV@lidation v (6) For details of GA-LVQ, GA-PNN and the complete

ANN model building process see [36, 40].

Fitness function[(4) aims at uniform high classifi- . .
cation rates for classes 1 and 3, whereas fitness (5 Parallelized Implementation
favors consistent classification rates for all three ckasse A higher computational performance, i.e. a higher
Functions aiming at even results on two different subset®iumber of calculated nets per time unit, can be achieved
of data can be constructed too, see e.g. fitness (6py parallelization, providing more results. This allows
Besides these direct performance measures in termfer a more valid evaluation and analysis of the al-
of classification rates, a fitness function can includegorithms’ quality. Combinations of data sets and/or
costs for net complexity, e.g. expressed as number ohdividuals of a population can be calculated simultane-
input variables and/or hidden neurons [38]. In generalpously, with variations of initialization for LVQs being
less complexity leads to better generalization. Thus, theoded in a LVQ'’s genotype. The nets can be computed
formulation of an appropriate fithess function highly in a scalable PC network with one server adminis-
depends on the specific problem to be solved. trating the population and the genetic algorithm, and



LVQ/PNN-clients getting instructions from the server results for estimation of the methods’ performance. For
for computing neural nets and delivering the fithessexample, 1250 data records are available for large cities.
value. We implement our algorithms of server and clientThey are separated in 940 (840, 740) records forming
for parallelized GA-LVQ and GA-PNN in C and Visual the learning set, 220 (270, 320) forming the validation
Basic. At the moment, GA-LVQ supports LVQ1 and set and 90 (140, 190) forming the generalization set.
LVQ2.1. Verifying experiments succeed: GA-LVQ and  Standard PNN, standard LVQ and basic exten-
GA-PNN are applied to the iris dataset with additional sions (e.g. conscience or turned off repulsion in the
useless input variables, that are correctly recognized andarly learning phase) are computed as implemented
eliminated byy-weights= 0. within the commercial software NeuralWorks Profes-
sional 1l/Plus with a single PC providing benchmark
results. PNN is tested with the hold-one-out method
A. Evaluation of Retail Stores on learning and validation data sets with variations
For the evaluation of a location of an existing storeof 0 in [0.0250.05,...,0.95. Each LVQ is initialized
in terms of sales volume or of an eligible location of a With 4 different random seeds leading to alternative
newly planned store, a more or less rough classificatiofieProducible starting positions of CVs. The number of
of expected sales volume is sufficient [36]. Therefore, CVs is approximately set to 5%, 10%, ...25% of the
estimating the sales volume is a classification problemnumber of learning examples. A standard early stopping
Results of a classification process should be used a#!le with variation of its parameters is used in order
Comp'etion of know|edge of human expertS, e.g. forto avoid OVerﬁtting from |eal’ning data. Alternatively,
building a priority list for locations to be inspected in Variations in fixed numbers of iterations (1M0/500
detail, not as substitution for invaluable human skills. times the size of the learning set) are analyzed. All
The data pool consists of external macroscopic up-to26 input variables are used. Learning schedules, i.e.
date data describing socio-demographic, economical inSequences of Kohonen's standard algorithms, scaling of
frastructure at a specific location, e.g. number of homednput variables and other parameters are taken with stan-
and residents, retail turnover for different branches ofdard adjustments recommended in the documentation of
trade, discretionary buying power of a region or numberNeuralWorks or pre-set by the program.
and type of retailers, as well as internal microscopic data In case of GA-LVQ and GA-PNN, computational
describing economical and technical figures of existingexperiments are performed on a Pentium-PC-network
stores, e.g. kind of assortment, configuration/equipmentith one server and up to 60 clients. Various fitness
components, year of last redecoration, sales volumeBinctions based on classification rates are applied to
for different periods, or sales area. A total of 26 inputva”dation data. Variants with binary genetic codes for
variables is given. We are interested in sales volumegctive/inactive input neurons and decimal codes for
of a specific product line. They are partitioned in threegradual activity and resulting weighted input values
classes corresponding to possible decisions concernirgfe tested. For LVQ, early stopping, fixed numbers of
location policy: iterations are evaluated as well as proportional complex-
« high: establish new store/continue business, ity costs. A population size olf.200 is c_hosen, derived
« medium: analyze location more detailed, e.g. asfrom results of pre-tests. An elitist selection, that aleay
sortment or in-store design, carries over the best net into the next population, is used.
« low: do not establish new store/shut down store.
C. Results

The task is to classify locations and stores, that are™
described in numerical patterns. Furthermore, interpre- The results of GA-LVQ dominate the results of
tation of classification results should lead to decisionsmanually adjusted LVQs, GA-PNN dominates standard
on assortment and in-store design for upgrading a storde2NN. GA-LVQ and GA-PNN provide results on the
. ) same level without clear dominance of one approach.

B. Computational Experiment The same can be noticed for PNN and LVQ. While

Data are pre-partitioned for large, medium andresults of GA-PNN are slightly higher than results of
small cities. Class memberships differ for each type ofGA-PNN, GA-LVQ provides results with a little lower
city, because decision rules and definitions of ’high’, variance. Within of GA-LVQ and GA-PNN, results
'medium’ or 'low’ sales volumes differ. For each class show no favorite fitness function. All classification rates,
approximately the same number of examples is availespecially theMCR on generalization data, are in the
able. Disjoint data sets are randomly selected fronsame satisfying order of magnitude for all three types of
entire data for learning (roughly 40-70% of available city (see Tablell, showing results from those nets that are
records), validation (5-25%) and out-of-sample gen-selected for generalization tests due to their promising
eralization tests (the rest). Different constellations ar results on learning and validation data.). Results of the
used for several experiments in order to get generalizetbp 10 % of the nets (in respect MCR on validation

IV. Empirical Evaluation — Real-world Scenario



Table I: MCR for generalization data (min/max, group of inputs, use of Euclidean distance and only one
of 'best’ nets); c: conscience, nr: no repulsion hidden neuron per class. Some typical properties of a
Type of city Small  Medium  Large store are given as 'format’, ‘type’, ‘especially equipped’
MCR%| min max min max min max  and 'duration’. Exemplified weights for analysis of are

LVQ ¢ & LVQ1 & LVQ2 57.7 71.1 50.1 60.7 54.2 588 presented in Table]ll. Results show strong influence of
LVQ ¢ & nr & LVQ2 58.4 71.6 50.1 64.1 57.2 59.4

GA-LVQ 68.6 69.7 69.9 71.7 70.0 71.8

PNN (besto in [0.25...0.4]) 60.2 68.2 63.6 67.3 633 689  Table Il: LVQ weights, three CVs for three classes
GA-PNN 66.4 71.2 672718 68.7 722 (cut-out of exemplified data, scaléd1; 1])

Class1 Class2 Class3 Weight

Property Wi1 Wi Wi3 span

data) show only a slight higher minimumICR on Type 0.65 010 -0.42 1.07
generalization data for the manually adjusted nets (up Skpecial equipment 041 0.25 -0.67 1.08
to seven basis points). Even those results are not in FormatA —097 -081  -063 034
P - Format B ~068 -088 098  0.30

the range of the results of GA-LVQ and GA-PNN.  Format C ~074 -071 -0.85 0.14
As expected, the fithess charts of GA-LVQ and GA- Duration -032  -0.09 0.07 0.39

PNN show a mixture between Fig. 2(a) and Fig. 2(b)
for hold-out data rather than a perfect shaped s-curvetype’. A store with a type coded as 1 will be rather
The fitness slightly decreases and the variance fronglassified belonging to class 1 with high sales volume,
high to low rank increases. On the other hand, chartg type O (scaled to-1) to class 3 with low sales
of classification rates of conventionally developed netsyolume. 'Special equipment’ or a short 'duration’ —
clearly tend to be similar to Fig. 2(b) showing an almostthe time period from opening or redecoration — seems
horizontal scatter plot for generalization data. Thus,to stimulate sales. The 'format has less influence.
classification rates on validation data give less or noAnswers for above mentioned questions can be derived
information about the quality of the nets. Therefore, afrom similar considerations and what-if-analyses by
systematic selection of a net that generalizes well angariation of certain values and computing distances for
reliably is impossible. classification. These analyses and interpretations are
For GA-LVQ, between 7 and 16, for GA-PNN be- not bound to usage of the proposed evolutionary net
tween 6 and 14 input variables are weighted with O,versions. The main results are feasible since they meet
the half of the rest is weighted with® Finer codings  with approval of human experts involved in the topic of
have no observable impact on results. For GA-LVQ,retail stores and evaluation of locations.
the number of hidden neurons depends on the number
of used variables. It is in the wide range from 30 to V. Conclusions
108. Using the non-zero-weighted inputs as full inputs  The proposed GA-LVQ and GA-PNN show promis-
for NeuralWorks shows inferior or similar results, but ing results for decision support in a complex economic
no improvement at all. real-world classification problem. The results dominate
results of conventionally applied standard LVQ and
PNN. A fitness function allows control in respect of
A classification result supports a decision on a lo-gecision maker's goal beyond the potential of the nets’
cation directly. Furthermore, it allows answering the aigorithms. For LVQ, common problems like reasonable
following interesting questions: initialization and values for learning parameters remain.
« What are the main properties of a store making itThey are mitigated by an evolutionary development with
a member of a special class? Which decisions orcomputation of a high number of nets in a parallel

D. Analysis and Interpretation

in-store design influence sales volume? PC network implementation. Within the model building
« Which properties of a location have impact on aprocess, decisions on ANN’s topology are automated.
store’s class of sales volume? On the one hand the degrees of freedom concerning

« Which potential for development does a store have’harameters of neural learning are reduced, on the other
How can this potential be used advantageously? hand new ones concerning evolutionary learning arise.
The basic idea with distance based classifiers is the Results may be improved by enhancements of the
interpretation of CVs and distances between them angroposed methods, e.g. application of more ANNSs in a
input patterns. Those weights;; from input neuron committee with each net voting for a class —influence
i to hidden neuronj that have similar values for all of different voting rules can be studied, combination
hidden neurons lead only to small distance differencesof different classification methods like support vector
Therefore, the corresponding input features have no omachines or distance-based rejection of classification.
only a weak impact on the classification result. TheFurthermore, the influence of different fithess functions
idea is exemplified assuming evenly relevant weightson results is an interesting research topic. An important



information for decision makers is the significance of[19] A. Zell, Simulation Neuronaler Netz&onn: Addison-Wesley,

results. The interpretation of the distances between CV
and the object to be evaluated may provide this infor-

S

(20]

mation. Further research should focus on comparison
between GA-LVQ, GA-PNN and several newer LVQ

enhancements like LVQ4 or on implementation of those

newer LVQ algorithms into GA-LVQ. Moreover, GA-
LVQ and GA-PNN should be applied to other real-

world classification problems striving for a broader 5
overlook and better evaluation of the methods’ overall

performance.
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