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Abstract-Key issue in time series forecasting with Neural 

Networks (NN) is the selection of the relevant input variables, 

which is often the result of data exploration by human experts, 

leading to dataset specific solutions and limiting forecasting 

automation. This becomes even more important in 

heterogeneous datasets, where each time series requires special 

modeling and can exhibit a different variety of stochastic and 

deterministic components of different unknown frequencies. 

Fully automated forecasting with NNs requires a methodology 

that can address these issues in an entirely data driven 

approach. This paper proposes a fully automated input selection 

methodology based on a novel iterative NN filter that 

automatically identifies for each time series the seasonal 

frequencies, if such are present, the dynamic structure of the 

time series, distinguishing between stochastic and deterministic 

components, ultimately producing a parsimonious set of input 

variables. The robustness and performance of the algorithm are 

evaluated against established time series forecasting methods. 

I. INTRODUCTION 

O
VER the last decades there has been an increase in the 
research of Artificial Neural Networks (NN) to 

forecasting problems. Both in theoretical and empirical 
works, NNs have shown evidence of good performance, in 
many cases outperforming established benchmarks [1]. NNs 
are non-parametric data driven models that in theory can 
approximate any linear and nonlinear data generating 
processes [2]. However, in practice, despite their theoretical 
capabilities, NNs have not been able to demonstrate robust 
performance and consistently good forecasting accuracy 
against established statistical forecasting methods, like 
exponential smoothing and ARIMA based models [3]. 
Furthermore, in the forecasting literature NNs have been 
shown to produce inconsistent results, resulting in limited 
practical applications, especially in the business forecasting 
and supply chain contexts [4, 5]. This can be attributed to the 
modeling complexity of such models [1]. There are 
numerous parameters that the human expert has to fme tune 
in order to produce accurate forecasts. Setting these 
parameters has proven to be challenging, resulting in several 
alternative model specification methodologies and NN 
variants [1, 6]. Although no specification methodology has 
been widely accepted [7, 8], it is well established that the 
most important determinant of forecasting accuracy for NNs 
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is the selection of the input variables [9, 10]. The importance 
of input variable and lag selection is evident, as the input 
vector needs to capture all characteristics of complex time 
series, including components of deterministic or stochastic 
trends, cycles and seasonality, interacting in a linear or 
nonlinear model with pulses, level shifts, structural breaks 
and different distributions of noise. Moreover, there is strong 
evidence that the ability of NNs to forecast trended and 
seasonal time series is connected with the correct 
identification and coding of the relevant inputs [11, 12], 
although it is still debatable how this should be done [13, 
14]. As a result, the valid and reliable specification of NNs 
for time series forecasting is often considered as much an art 
as science, limiting automatic large-scale implementations in 
forecasting problems. 

Automatic forecasts of large numbers of univariate time 
series are often needed in business and other contexts. 
Automatic model specification for forecasting requires a 
systematic time series analysis procedure that can scale-up 
[15, 16]. Time series should be analyzed for their 
components, identifying the presence of trend, cycles and 
seasonal patterns, while filtering irregularities, such as 
outliers, level shifts, etc [17]. Despite the existence of 
several semi- and fully-automatic approaches for statistical 
methods these normally assume a given and known 
underlying frequency in the dataset, which is typically 
reflected in the observed seasonality of the time series and is 
assumed to remain constant across time series of the same 
dataset. These are significant shortcomings of these 
approaches, since the human element is still required and 
heterogeneous dataset that include time series of varying 
frequencies cannot be forecasted automatically. In practice, 
it is not uncommon to need both short- and long-term 
forecasts from low- and high- frequency time series for 
strategic and operational decision support, as is the case for 
example in production and inventory decision making [18, 
19]. Therefore, fully automated forecasting systems that are 
able to address these issues, even with well established 
statistical forecasting methods, do not exist. 

Furthermore, many forecasting methods are not readily 
applicable to a wide range of frequencies, especially when 
multiple overlaying periodicities appear, as it is common in 
high frequency data [20]. Typically, in particular for high 
frequency applications, the functional form of statistical 
forecasting methods has to be altered to address the specific 
properties of the frequency of the time series at hand [21]. 



This makes it impossible to forecast datasets of unknown 
frequencies and challenging to produce fully automated 
forecasting systems. However, NNs are flexible models that 
have been shown to perform well in forecasting a large 
variety of different frequencies, requiring only minimal 
changes to their input vector [22, 23]. 

Based on this attribute of NN s, we have proposed an input 
variable selection methodology for forecasting with NNs that 
is applicable to datasets of varying seasonality, enabling the 
construction of fully automated forecasting systems. The 
proposed methodology combines a novel Iterative Neural
Filter (INF), which is based on multilayer perceptrons, with 
statistical methods, in order to produce a set of input 
variables for automated forecasting with NNs. The INF can 
automatically identify frequencies that are present in a time 
series and an initial set of input variables that are fed to 
statistical methods that are able to robustly analyze the 
dynamic structure and nature of time series, once the relevant 
frequencies are known; thus, performing automatically 
feature evaluation and time series identification. The 
proposed methodology is able to capture the structure of 
time series, and to automatically identify the periodicity of 
the time series, even in the presence of multiple overlaying 
seasonalities. It is fully data driven and should be able to 
capture any unknown data generating process without the 
need for domain knowledge and human intervention. 

We have applied a prototype of the INF methodology 
successfully in forecasting the ESTSP 08' (European 
Symposium on Time Series Prediction) dataset that includes 
time series of varying seasonality [22], demonstrating that 
fully data driven NN modeling is possible. That prototype 
had several limitations and in this paper we present a 
complete input selection methodology based on the INF. 
Forecasting accuracy is improved substantially, by 
identifying and distinguishing between deterministic and 
stochastic elements of the time series, coding the inputs 
accordingly and more economically; improving performance 
and computational efficiency by capturing the time series 
structure in parsimonious input vectors with minimal 
information redundancy. A key advantage of this 
methodology is that it avoids using wrappers. Consequently, 
it readily scales-up for large-scale applications. The novel 
input variable selection methodology is independent of time 
series frequency, allowing for automated forecasting with 
NNs in heterogeneous datasets, thus addressing both the 
problems of input variable selection for forecasting with 
NNs and automated forecasting for datasets of varying 
frequency. 

We provide evidence of good performance using a Monte 
Carlo simulation of synthetic time series of varying 
frequencies, exhibiting both stochastic and deterministic 
seasonalities and varying levels of Gaussian noise, 
replicating real business time series and real monthly data. 
We find consistent performance of the methodology across 
different frequencies, levels of noise and nature of 

seasonality. Furthermore, the performance of the proposed 
methodology is benchmarked against exponential smoothing, 
a well established statistical method [3, 24], and found to be 
superior. 

In section II, we introduce NNs in the context of time 
series forecasting and presents the proposed INF 
methodology. Section III describes the experimental setup of 
the forecasting accuracy evaluation simulations and section 
IV provides the results, followed by concluding remarks and 
future work in section V. 

II. METHODS 

A. Neural Networks/or Time Series Forecasting 

NNs have been successfully applied in both univariate and 
multivariate time series forecasting. The most widely 
employed architecture is the common multilayer perceptron 
(MLP). These well researched regarding their properties and 
have been shown to be able to generalize any linear or 
nonlinear functional relationship to any degree of accuracy 
without any prior assumptions about the underlying data 
generating process [1, 25]. In this study we will use MLPs to 
produce the forecasts, thought it is possible to use other 
types of NNs in conjunction with the proposed INF input 
variable selection methodology. 

In forecasting feed-forward architectures of MLPs are 
used to model nonlinear autoregressive NAR(p)-processes or 
NARX(p)-processes using external variables to code 
exogenous events as intervention variables. Given a time 
series Y, at a point in time t, a one-step ahead forecast )It+! is 
computed using p=! observations Yt. Yt-l, ... , Yt-l+l from ! 
preceding points in time t, t-l, t-2, . . .  , t-I+l, with! denoting 
the number of input units of the NN. The functional forms is 

(1) 

where Y = [Y;, ... Yt-l+d is the vector of the lagged 
observations (inputs) of the time series. The network weights 
are w = (P, .,), P = [fh P2 ... PHl and ., = bu, "'/12··· 'IHI] for 
the output and the hidden layer respectively. The �o and YOi 
are the biases of each neuron. ! and H are the number of 
input and hidden units in the network and gO is a non-linear 
transfer function [26], which is usually either the sigmoid 
tangent or the hyperbolic tangent function [1]. MLPs offer 
extensive degrees of freedom in modeling for prediction 
tasks. The modeler must choose the appropriate data and its 
pre-processing, the NN architecture, the signal processing 
within nodes, the training algorithm and the cost function. 
For a detailed discussion of these issues and the ability of 
NNs to forecast time series, the reader is referred to [1]. The 
specification of the input vector has been identified as being 
particularly crucial to achieving valid and reliable forecasts 
and examined in more detail in the following section. 



B. Automatic input variable selection using the INF 
The identification of input variables and variable lags aims 

to capture the relevant components of the data generating 
process in a parsimonious form. In time series modeling, this 
involves the identification of the underlying time series 
components of trend and seasonality and capturing their 
behavior in lags of the dependent variable. Several 
methodologies have been suggested for input variables 
selection for NNs in the forecasting literature, some of which 
are better suited than others to heterogeneous datasets [6]. 
However, all methodologies assume that the underlying time 
series frequency is known. 

Fully automatic input variable selection, which assumes 
no domain knowledge of the forecasting problem at hand, 
requires a data driven methodology to identify the 
frequencies that exist in the time series. Once the frequency 
of the time series is known then possible trend and 
seasonality have to be identified and coded in the input 
vector. There has been considerable debate on how to best 
perform trend and seasonal modeling for time series 
forecasting [11, 13, 14, 27, 28]. It has been shown that 
correctly identifying and coding these components as 
deterministic or stochastic has a significant impact on 
forecasting accuracy [12, 29, 30]. Furthermore, the dynamic 
lag structure of the time series needs to be identified. In this 
study we propose a framework that address all these issues in 
a fully data driven methodology. 

First we will define the proposed INF, which allows us to 
perform automatic frequency identification and initial feature 
selection. Any given time series Y of length N can be split in 
N/s vectors, where s = [1, 2 ... NI2}. Each vector exhibits 
some distinct pattern, which is different for each value of s. 
Furthermore, for different value of s the time series is split in 
a different number of vectors, with the extremes of s = 1 that 
the time series is split in N vectors, each containing a single 
observation and s = NI2 that the time series is split in 2 
vectors each containing NI2 observations. When s is the 
same as S, the true seasonal length of the time series, all the 
vector will exhibit the same pattern with some deviations due 
to noise; hence the distance between them will be minimised. 
We can measure the distance between these vectors using the 
Euclidean distance. Euclidean distance measures the distance 
between two points. For the one-dimensional case, for two 
points P = p and Q = q the Euclidian distance is defined as 

(2) 

For the case of one-dimensional vectors with equal length 
n, the distance is the sum of the pairwise distances of the n 
pairs. If the vectors are more than two, then for the pairwise 
distance calculation all the possible combinations must be 
considered. To illustrate this, for three vectors P = [Pj, 
P2 ... pJ, Q = [qj, q2 ... qJ and R = [rj, r2 ... rJ for t = 1 there 
are three different pairs that the distance is measured: (p j, 

qj), {pj, rd and (qj, rj). Generalising, for n number of vectors 
there are n(n--1)12combinations. Dividing the sum of 
distance of all the pairs by the number of pairs provides us 
with an average distance per pair for each given s. This 
measurement is independent of the number of vectors, or 
their sizes, in which we divide the original time series. This 
way we can compare distances calculated for any s directly. 
The s that minimises the distance will indicate a possible 
seasonal length; note that if s = 1 then there is no 
seasonality. 

If no noise is present in the time series then S and all 
multiples of it will exhibit the same minimum distance, 
therefore making it hard to distinguish the correct S from its 
multiples. In order to overcome this problem, a penalty is 
applied to longer s. The penalised mean distance Dps is 
expressed as 

Dps(s) = logDs + 1) -dog(s) , (3) 

where Ds is the mean distance for a given s and T is a scaling 
factor. This penalty ensures that no multiples of S will be 
identified instead of the true S, as they will always be 
penalised by Tlog(aS), with a being the number that S is 
multiplied. Penalty T controls the sensitivity of Dps to noise 
(we have empirically found T = 0.15 to be adequate for most 
datasets). The minimum penalised distance identifies the 
shortest seasonality of the time series. In order to account for 
multiple independent or interacting seasonal frequencies, the 
prominent seasonality that minimises Dps. has to be filtered 
from the time series, thus allowing the identification of less 
dominant frequencies. 

To do this, we propose an iterative neural filter (INF), 
capable of removing any type of non-linear seasonality in the 
presence of other seasonalities, trends and irregularities in 
the time series. This filter takes advantage of the properties 
of NNs, which have been shown to be able to approximate 
any linear or nonlinear patterns [1], model any seasonality in 
a time series regardless of the frequency by altering only the 
inputs of the network [22, 23] and model seasonal signals 
very robustly and parsimonious [12]. This allows us to avoid 
a strict functional form of the filter; hence be applicable to 
more cases. We use a special MLP to implement the INF that 
uses as inputs only contemporaneous explanatory variables 
that encode time series patterns. The objective of this MLP is 
not to forecast, but only to capture the observed seasonalities 
in the time series. Therefore, no test set is used during 
training, withholding S observations for validation purposes 
and using all remaining N-S observations of the time series 
for training. Note that S is estimated in the previous phase 
and reflects where s = Ds. Initially the INF has four inputs: 

'1/1 (t) = Sin( 
2; ) , (4) 

'l/z(t) = co{2;} (5) 

'l/3(t) = t, (6) 



1f/4 (I) = N - t + 1. (7) 

For all (4) - (7) t = I...N. The first two inputs (4) and (5) 
code signals of any given period N. In contrast to the s-1 
binary dummies conventionally used in regression to encode 
deterministic seasonality, the explanatory variables If/l and 1f/2 
code seasonality as a single pair of sine-cosine waves, letting 
the NN do the detailed mapping, thus substantially reducing 
the size of the input vector, without any loss in accuracy 
[12]. This becomes especially useful for modeling very long 
and multiple seasonalities. The remaining inputs (6) and (7) 
have a dual purpose. They provide an explicit representation 
of the point in time t within the time series facilitating a 
representation of structural changes of the level of the time 
series, i.e. different forms of trend or level shifts, which may 
interact with the periodic seasonal signals. Furthermore, they 
are used to model changes in the magnitude of the periodic 
signal over time helping the MLP to capture multiplicative 
forms of periodic signals. All contemporaneous inputs are 
linearly scaled between [-1, 1]. 

Once the MLP is trained, the network output, which 
expresses the regular structure of the time series as captured 
by the MLP, is subtracted from the original time series Y, 
effectively creating a filtered time series from which the 
dominant pattern of the periodic signal has been removed. 
Following this, the process is repeated in order to stepwise 
identify and eliminate further remaining periodicities. In the 
following iterations, seasonal components of different length 
s to the one identified before are added as additional pairs of 
sine-cosine inputs. The process is repeated until the most 
prominent period, as identified by Dps is s = 1, which implies 
that no further seasonality is present in the time series. At 
this point the inputs '1'3 and '1'-1 are dropped and all the 
remaining identified pairs of sine-cosine waves (that encode 
the frequencies that are present in the time series) are used as 
preliminary inputs in the phase of the proposed 
methodology. Figure 1 illustrates the steps of INF. Although 
the MLP in the heart of INF does not have to follow a 
specific architecture, we empirically found that a common 
single hidden layer MLP with hyperbolic tangent activation 
function 1 and a linear output node performs well under most 
circumstances. Regarding the training algorithm and setting 
of the NN, there are is no special consideration and standard 
training is used. The reader can refer to [1] for more details 
about MLP training. Note that the network should be 
initialized several times to make it robust to the stochastic 
nature of its training. 

Once the number of seasonal patterns and their respective 
frequencies are identified then it is necessary to determine 
whether they are deterministic or stochastic, as this evidently 
requires different coding of the inputs for forecasting with 
NNs [12]. Obviously, if no seasonalities are identified this 
step is skipped. To do this a simple heuristic based on 

1 We used 16 hidden nodes for all experiments. The performance of the 
filter proved to be very robust to the number of nodes. 
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Fig. I. Flow chart of the proposed INF methodology. The outputs are 
the identified frequencies and an initial set of input variables 
expressed through pairs of sines-cosines. 

regression models is employed. Initially, two competing 
models formulations, a deterministic and a stochastic one, 
are constructed. For time series Y, given) = 1, . . .  ,Ns different 
identified seasonalities Sj of length i, the deterministic and 
the stochastic models respectively are: 

N.� s} 

-pDt =a+M + LLbjidjit +6t' j=1 i=1 
(8) 

(9) 

Both deterministic yo and stochastic ys models include a 
constant a. For the deterministic model a centered moving 
average M of length equal to max(S) is used to aid in the 
estimation of the coefficients bji for the seasonal dummies d;i' 
Note that (8) can be simplified by replacing M, bji and d;i 
with Ns vectors of seasonal indices, one for each seasonality. 
The stochastic formulation is a dynamic regression, where 
the inputs are Ns seasonal lags of the time series Y, one for 
each identified frequency, multiplied by the respective 
coefficients bj• The models are fitted to the original time 
series Y by minimizing the square of residuals e and the 
Akaike Information Criterion (AIC) of both models is 
calculated. The model that performs best indicates whether 
the periodic components are deterministic or stochastic. Note 
that this simple test essentially follows the ideas of formal 
statistical tests that are used in distinguishing between 
deterministic and stochastic seasonality, like the Canova-



Hansen test [30, 31]. However, in this study such tests are 
not used because they have not been designed to cope with 
either multiple or long seasonalities. 

The next step in the methodology is to identity the 
dynamic structure of the time series In the forecasting 
literature there are several alternatives on how to select the 
relevant time lags of time series for univariate forecasting 
[7]. We have opted to avoid using wrapper methodologies to 
retain the scalability of the algorithm; therefore we consider 
only filter approaches. The most common are based on the 
analysis of the (partial-) autocorrelation function, ARIMA 
modeling analogies, stepwise regression and their nonlinear 
extensions. In an evaluation of these methodologies stepwise 
regression was found to be consistently the most robust and 
accurate on different time series patterns and frequencies [6]. 
Therefore, here we employ stepwise regression to identity 
the dynamic structure of the time series. However, we take 
advantage of the preliminary input identification done with 
the INF by priming the regression with these inputs. We 
define XINF a matrix which has a columns the outputs of the 
INF as transformed in (8) or (9), depending which model 
showed better Ale. In the case of the deterministic model 
formulation, vectors of seasonal indices are preferred to 
dummies. This is done in order to limit the variables and 
speed up the calculation of the stepwise regression. 
Furthermore, we define the matrix XLAG that contains the 
lags of time series Y for lags t-l to t-n, where n is the 
maximum lag considered and a constant column. Using these 
two matrices we run a stepwise regression model, forcing the 
variables described by the columns of XINF to be initially 
included in the stepwise model. These variables are expected 
to be significant, as identified by the INF, and therefore 
substantially limit the number of stepwise iterations required 
until the primed regression converges. Furthermore, this 
formulation limits the inclusion of redundant information, as 
the primed variables do not allow collinear variables to enter 
the regression, essentially decreasing their FlO_enter statistic. 
For additional info on stepwise regression see [32, 33]. 

The output of the previous step is a set of lagged variables 
(seasonal or not) and deterministic seasonal vectors, which 
were identified based on the frequencies outputted by the 
INF. These are consequently used as inputs to NN models to 
forecast time series of any unknown frequency and structure. 
Note, that a key advantage of using the INF and later NNs to 
produce the forecast is their ability to accurately represent 
seasonal information with very few variables, while at the 
same time being able to model additive or multiplicative, 
continuous or discontinuous seasonal patterns with the same 
inputs [6]. This greatly extends the flexibility of the 
proposed methodology to address unknown time series. An 
overview of the complete input variable selection 
methodology is illustrated in figure 2. 
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time series 
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Fig. 2. Flow chart of the proposed automatic input variable selection 
methodology. 

III. EXPERIMENTAL DESIGN 

A. Time Series 

In order to evaluate the performance of the proposed 
methodology we construct a synthetic dataset that contains a 
mixture of stochastic and deterministic seasonality time 
series, with different frequencies and different levels of 
noise. Time series are constructed using two basic equations, 
one for the stochastic (10) and one for the deterministic case 
(11). 

f/J(L)L1sY, = e(L)zr' 
N, Sf 

y, =J.l. + LLbj;dj;, + Z,' 
j�1 ;�1 

(10) 

(11) 

For (10) L is the lag operator, LIs is the seasonal difference 
operator, ({J and () are the coefficients of the autoregressive 
and moving average process respectively. For the 
deterministic case, Ii is the level of the time series and bji the 
coefficients for the seasonal dummies d;;, while Sj is the 
periodicity of seasonality j = 1, ... Ns• For both equations Zt 
follows N(0,cr2). We simulate four different levels of noise, 
no noise (cr = 0), low noise (cr = 5), medium noise (cr = 10) 
and high noise (cr = 15). All time series have a level !l = 100. 
A set of different frequencies are used to simulated quarterly 
data (S = 4) and monthly data (S = 12). For each frequency 
and noise level we produce 30 time series, resulting in 240 
stochastic and 240 deterministic time series. We also create a 
small subset of double seasonal daily data (S = 7, 365), using 
only 5 time series per noise level, resulting in 40 time series 
in total. In total 520 time series are simulated. The sample 
sizes of the quarterly, monthly and daily time series are 600, 
900 and 1825 observations respectively, allowing several 



seasonal cycles to be observed. The time series are then split 
in 3 equal sized subsets for training, validation and out-of
sample testing. 

Additionally five real time series are used. These are all 
monthly time series corresponding to US air passenger miles, 
average bus ridership for Portland Oregon, total number of 
room nights and takings in Victoria and number of serious 
injuries and deaths in UK road accidents. These time series 
are 216, 114, 186, 186 and 192 months long respectively and 
can be found at [34]. The validation and the test sets are set 
to 24 months. 

B. Experimental setup 

The forecasting horizon for quarterly, monthly and daily 
synthetic time series is set to 8, 24 and 50 observations 
respectively, while for the real data this is set to 12 months. 
To assess the forecasting performance of the NNs the 
symmetric mean absolute percent error (sMAPE) is used. 
This has the advantage of being scale independent, allowing 
to aggregate results over time series and is less biased than 
the commonly used mean absolute percentage error (MAPE). 
It computes the absolute error in percent between the actuals 
X; and the forecast F, for all periods t of the test set of size 
n=h for each time origin: 

SMAPE = -
" 

100' 
1 n ( IX -FI ) 

n � (IX,I + IF,I)/2 
(12) 

All models are evaluated using a rolling time origin 
evaluation, producing multiple forecasts for each time series, 
resulting in more accurate estimation of the forecasting error. 
Furthermore, the error estimation is robust against irregular 
origins [35]. The accuracy of the competing NN models is 
evaluated for statistically significant differences (at 5% 

significance level) using the nonparametric Friedman test 
and Nemenyi tests, to facilitate an evaluation of 
nonparametric models without the need to relax assumptions 
of ANOV A or similar parametric tests [36]. 

C. Methods 

A single MLP setup is used to forecast all time series. The 
only variable part of the MLP is the input vector which is 
the result of the INF input variable selection algorithm. The 
neural network, uses a single hidden layer with 6 nodes and 
hyperbolic tangent activation functions. The networks are 
trained using the Levenberg-Marquardt algorithm, which 
requires setting the flLM and its increase and decrease steps. 
Here flLM=10-3, with an increase step of flinc=10 and a 
decrease step of fldec=1O-1. For a detailed description of the 
algorithm and the parameters see [37]. The maximum 
training epochs are set to 1000. The training can stop earlier 
if flLM becomes equal of greater than flmax=1010 or the 
validation error increases for more than 50 epochs. This is 
done to avoid over-fitting. When the training is stopped the 
network weights that give the lowest validation error are 
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Results are provided by noise level and nature of the time series 
components for each training, validation and test subsets. The best performmg 
model in each row is underlined. 

Subset 
Train 
Valid 
Test 

Primed NN 
8.52% 
5.06% 
7.86% 

TABLE III 
sMAPE ACCURACY 

Real Data 
Normal NN 

8.74% 
6.26% 

11.67% 

Stoch NN 
7.86% 
5.91% 

11.95% 

The best performing model in each row is underlined. 

EXSM 
7.82% 
6.83% 

10.72% 

used. In all experiments the 1000 epochs training limit was 
never excided due to the early stopping criterion. Each MLP 
is initialised 40 times with randomised starting weights to 
accommodate the nonlinear optimisation and to provide an 
adequate sample to estimate the distribution of the forecast 
errors in order to conduct the statistical tests. The MLP 
initialisation with the lowest error for each time series on the 
validation dataset is selected to predict all values of the test 
set. Lastly, the time series and all explanatory variables that 
are not binary are linearly scaled between [-0.5, 0.5]. 

To illustrate the advantage of priming the regression (the 
model is named prime YN) as discussed in section II, two 
alternative inputs methodologies are considered; the first, 
normal NN uses a normal stepwise regression. Also to 
illustrate the importance of selecting between stochastic and 
deterministic components a third model uses only stochastic 



inputs (stoch_NN). The latter is the basis of the proposed 
specification methodologies in several papers (for e.g. see 
[38, 39]). 

Any empirical evaluation of time series methods requires 
the comparison of their accuracy with established statistical 
benchmark methods, in order to assess the increase in 
accuracy and its contribution to forecasting research. This is 
often overlooked in NN experiments [40]. In this analysis 
seasonal exponential smoothing models (EXSM) are used. 
Note that it is impossible to apply these models fully 
automatic, since a human expert must decide whether there is 
seasonality in the time series or not and what is the relevant 
frequency. To overcome this limitation we used the output of 
the INF to identifY the periodicities to setup the benchmark 
models automatically. This model family is selected as a 
benchmark due to its proven track record in univariate time 
series forecasting [3]. For more details on exponential 
smoothing models and the guidelines that were used to 
implement them in this analysis see [41]. 

IV. RESULTS 

The ability of the INF to automatically and correctly 
identifY the underlying frequencies in each time series was 
assessed by comparing the outputted frequencies with the 
true data generating process. The success rate was 100%. 
The performance of the method was not affected by the 
different frequencies or the different structure of the time 
series. 

Using the outputs of the INF the inputs were selected 
using the primed regression and the other two competing 
alternatives. Table I provides the aggregated accuracy 
statistics for the simulated data. These are aggregated by the 
nature of the components of the time series (deterministic or 
stochastic) and noise levels to assess the conditions under 
which each model performs better. Furthermore, in table I 
the benchmark model accuracy is provided. Note that in 

TABLE II 
TEST SET STATISTICAL TESTS 

Friedman p-value 

Method 
Primed_NN 
Normal_NN 
Stoch NN 

Mean rank 
50.31 
64.37 
66.82 

0.000 
Rankin 

g 
1 
2 
3 

The three alternative models are significantly different. The Nemenyi test 
provides the ranking of the models, considering individual statistically 
significant differences between models. Models that have a difference of mean 
ranks less than 0.2 are not significantly different under the 5% significance 
level. The model with the lowest mean rank performs statistically the best. 

order to make this model fully automated the identified 
frequency output of the INF was used, resulting in a hybrid 
INF-EXSM method. In the same table, overall accuracies per 
sample and model are also reported. For both the 
deterministic and the stochastic case the Normal NN fits 
better to the training set, but is less accurate than the 
Primed NN in both the validation and test sets. With the 
exception of the stochastic low noise case, where EXSM 
performs the best, the proposed algorithm (Primed_NN) 

consistently outperforms all other models. All models are 
able to perfectly model time series with no noise. As 
expected the Stoch _ NN that models only the stochastic part 
of the time series performs better when there are stochastic 
components in the time series. Similarly the NormalfiN 
performs better when there are deterministic components. 
Primed _NN that can distinguish between the two cases, 
performs best. Note that when the accuracy in the test set is 
considered the benchmark EXSM comes second only to 
Primed _ NN, demonstrating the adequacy of this benchmark 
as it has been observed in previous studies [3, 8]. 

Testing for statistically significant differences among the 
different models a Friedman test is first applied to identifY if 
at least one model is different under 5% significance level 
and then the post-hoc Nemenyi test is used to provide the 
ranking. The results are found in table II. The Primed _ NN is 
found to significantly outperform other alternatives. 

Table III provides the results for the real time series. 
Primed _ NN is found to outperform other NN specifications 
and the benchmark EXSM in agreement with the results 
presented in table I. 

V. CONCLUSION 

This paper proposes a methodology for automatically 
identifYing the input vector for forecasting with NN s for time 
series that exhibit unknown frequencies. An Iterative Neural 
Filter (INF) is proposed for automatic frequency 
identification and feature extraction. The output of this filter 
is transformed to best fit the stochastic or deterministic 
nature of the time series and then inputted in a primed 
regression that extends the input vector to capture the 
dynamic structure of the time series. The principle of the 
methodology is to combine the flexible nature and 
approximation capabilities of the NNs with efficient filter 
approaches to produce a robust and accurate automatic input 
selection methodology that is scalable. 

The performance of the proposed methodology was 
demonstrated using simulated and real time series. The data 
were pooled to produce an heterogeneous dataset and the 
INF was asked to automatically identifY the frequency of 
each time series and identifY and periodicities that are 
present. The filter successfully identified a set of 
preliminary inputs that were then fed to the rest of the 
methodology to eventually produce input vectors for a fixed 
setup MLP, in a fully automated process. The proposed 
methodology outperformed other NN alternatives and 
statistical benchmark models. 

This study proposes a solution to the automatic 
specification of the input vector for neural networks for 
forecasting. The architecture of the NN was fixed, which 
may have penalised their performance. We need to evaluate 
strategies for automatically readjusting the setup of the NN, 
ideally without using wrappers, in order to retain the 
scalability of the proposed algorithm. 

Last but not least, the proposed INF was used in order to 
fully automated exponential smoothing models, which 



require a human expert to set the relevant time series 
frequency. It was shown that a hybrid INF-statistical model 
approach is readily implementable, providing a fully 
automated solution with well accepted and established 
forecasting methods. 
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