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Abstract

Corporate data mining faces the challenge of systematic knowledge discovery in large data streams to support man-
agerial decision making. While research in operations research, direct marketing and machine learning focuses on the
analysis and design of data mining algorithms, the interaction of data mining with the preceding phase of data prepro-
cessing has not been investigated in detail. This paper investigates the influence of different preprocessing techniques of
attribute scaling, sampling, coding of categorical as well as coding of continuous attributes on the classifier performance
of decision trees, neural networks and support vector machines. The impact of different preprocessing choices is
assessed on a real world dataset from direct marketing using a multifactorial analysis of variance on various perfor-
mance metrics and method parameterisations. Our case-based analysis provides empirical evidence that data prepro-
cessing has a significant impact on predictive accuracy, with certain schemes proving inferior to competitive
approaches. In addition, it is found that (1) selected methods prove almost as sensitive to different data representations
as to method parameterisations, indicating the potential for increased performance through effective preprocessing; (2)
the impact of preprocessing schemes varies by method, indicating different �best practice� setups to facilitate superior
results of a particular method; (3) algorithmic sensitivity towards preprocessing is consequently an important criterion
in method evaluation and selection which needs to be considered together with traditional metrics of predictive power
and computational efficiency in predictive data mining.
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1. Introduction

In competitive consumer markets, data mining
faces the growing challenge of systematic know-
ledge discovery in large datasets to achieve
ed.

mailto:s.crone@lancaster.ac.uk
mailto:lessmann@econ.uni-hamburg.de
mailto:stahlboc@ econ.uni-hamburg.de
mailto:stahlboc@ econ.uni-hamburg.de


782 S.F. Crone et al. / European Journal of Operational Research 173 (2006) 781–800
operational, tactical and strategic competitive
advantages. As a consequence, the support of cor-
porate decision making through data mining has
received increasing interest and importance in
operational research and industry. As an example,
direct marketing campaigns aiming to sell prod-
ucts by means of catalogues or mail offers [1] are
restricted to contacting a certain number of cus-
tomers due to budget constraints. The objective
of data mining is to select the customer subset
most likely to respond in a mailing campaign, pre-
dicting the occurrence or probability of purchase
incident, purchase amount or interpurchase time
for each customer [2,3] based upon observable cus-
tomer attributes of varying scale. Traditionally,
response modelling has utilised transactional data
consisting of continues variables to predict pur-
chase incident focusing on the recency of the last
purchase, the frequency of purchases and the over-
all monetary purchase amount, referred to as
recency, frequency and monetary value (RFM)-
analysis [2]. The continuous scale of these attri-
butes together with their limited number has facil-
itated the use of conventional statistical methods,
such as logistic regression.

Recently, progress in computational and stor-
age capacity has enabled the accumulation of ordi-
nal, nominal, binary and unary demographic and
psychographic customer centric data, inducing
large, rich datasets of heterogeneous scales. On
the one hand, this has advanced the application
of data driven methods like decision trees (DT)
[4], artificial neural networks (NN) [2,5,6], and
support vector machines (SVM) [7], capable of
mining large datasets. On the other hand, the
enhanced data has created particular challenges
in transforming attributes of different scales into
a mathematically feasible and computationally
suitable format. Essentially, each customer attri-
bute may require special treatment for each algo-
rithm, such as discretisation of numerical
features, rescaling of ordinal features and encod-
ing of categorical ones. Applying a variety of dif-
ferent methods, the phase of data preprocessing
(DPP) represents a complex prerequisite for data
mining in the process of knowledge discovery in
databases [8].
Aiming to maximise the predictive accuracy of
data mining, research in management science and
machine learning is largely devoted to enhancing
competing classifiers and the effective tuning of
algorithm parameters. Classification algorithms
are routinely tested in extensive benchmark
experiments, evaluating the impact on predictive
accuracy and computational efficiency, using
preprocessed datasets; e.g. [9–11]. In contrast to
this, research in DPP focuses on the development
of algorithms for particular DPP tasks. While fea-
ture selection [12–14], resampling [15,16] and the
discretisation of continuous attributes [17,18] are
analysed in some detail, few publications investi-
gate the impact of data projection for categorical
attributes and scaling [19,20]. More importantly,
interactions on predictive accuracy in data min-
ing are not been analysed in detail, especially
not within the domain of corporate direct
marketing.

To narrow this gap in research and practice, we
seek to investigate the potential of DPP in a real
world scenario of response modelling, predicting
purchase incident to identify those customers most
likely to respond to a mailing campaign in the pub-
lishing industry. We analyse the impact of different
DPP schemes across a selection of established data
mining methods. Due to the questionable useful-
ness of traditional statistical techniques in large
scale data mining settings [21,22] and mixed scal-
ing levels of customer attributes, we confine our
analysis to data driven methods of C4.5 DT, NN
and SVM.

The remainder of the paper is organised as fol-
lows: We begin with a short overview of the classi-
fication methods of DT, NN and SVM used. Next,
the task of DPP for competing methods for scal-
ing, sampling and coding is discussed in Section
3. Conducting a structured literature review, we
exemplify that the influence of DPP is widely over-
looked to motivate our further analysis. This is fol-
lowed by the case study setup of purchase incident
modelling for direct marketing in Section 4 and the
experimental results providing empirical evidence
for the significant impact of DPP on classification
performance in Section 5. Conclusions are given in
Section 6.
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2. Classification algorithms for data mining

2.1. Multilayer perceptrons

NN represent a class of statistical methods
capable of universal function approximation,
learning non-linear relationships between indepen-
dent and dependent variables directly from the
data without previous assumptions about the sta-
tistical distributions [23]. Multilayer perceptrons
(MLP) represent a prominent class of NN [24–
26], implementing a paradigm of supervised learn-
ing methods which is routinely used in academic
and empirical classification and data mining tasks
[27–29].

The architecture of a MLP, as shown in Fig. 1,
consists of several layers of nodes uj fully intercon-
nected through weighted acyclic arcs wij from each
preceding layer to the following, without lateral
connections or feedback [27]. The information is
processed from left to right, using nodes in the
input layer to forward input vector information
to the hidden layer. Each hidden node j calculates
a weighted linear combination wTo of its input vec-
tor o, weighting each input activation oi of node i

in the preceding layer with the transposed matrix
wT of the trainable weights wij including a train-
able constant hj. The linear combination is trans-
formed by means of a bounded, non-decreasing,
non-linear activation functions in each node [21]
to model different network behaviour. The pro-
cessed results are forwarded to the nodes in the
Fig. 1. Three layered MLP showing the information processing with
function as sigmoid activation function and an identity output functi
output layer, which compute an output vector of
the classification results for each presented input
pattern.

MLP learn to separate classes directly from pre-
sented data, approximating a function g(x): X ! Y
by iteratively adapting w after presentation of an
input pattern to minimise a given objective function
e(x) using a learning algorithm. Each node forms a
linear hyperplane that partitions feature space into
two half-spaces, whereby the non-linear activation
function models a graded response of indicated
class membership depending on the distance of x
to each node hyperplane [27]. Nodes in successive
hidden layers form convex regions as intersections
of these hyperplanes. Output units form unisons
of the convex regions into arbitrarily shaped, con-
vex, non-convex or disjoint regions. The successive
combination creates a complex decision boundary
that separates feature space into polyhedral sets or
regions, each one being assigned to a different class
of Y. The desired output of class membership may
be coded using a single output node yi = {0; 1} or
using n nodes for multiple classifications yi =
{(0, 1); (1, 0)}, respectively. Moreover, the choice
of the output function allows the prediction of bin-
ary class memberships as well as the more suitable
conditional probability of class membership to rank
each customer instance (see Section 4.3).

Being universal approximators, NN should the-
oretically be capable of processing any continuous
input data or categorical attributes of ordinal,
nominal, binary or unary scale [19] to learn any
in a node, using a weighted sum as input function, the logistic
on.
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Fig. 2. Linear separation of two classes �1 and +1 in two-
dimensional space with SVM classifier [34].
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non-linear decision boundary to a desired degree
of accuracy. However, best practices suggest scal-
ing of continuous and categorical input to
[�1; 1], output data to match the range of the acti-
vation functions, i.e. [0; 1] or [�1; 1], and avoid-
ance of ordinal coding [19] to facilitate learning
speed and robustness. Despite their significant
attention and application, only limited research
on the impact of DPP decisions of scaling, coding
and sampling on data mining performance exists.

2.2. Decision trees

DT are intuitive methods for classifying a pat-
tern through a sequence of rules or questions, in
which the next question depends on the answer
on a current question. They are particularly useful
for categorical data, as rules do not require any
notion of metric. A variety of different DT para-
digms exists, such as ID3, C4.5, CART or
CHAID. A popular approach to DT modelling
induces decision trees based on the information
theoretical concept of entropy [30]. Depending
upon the proportion of examples of class �1 and
+1 in the sample, a tree is split into nodes on the
attribute which maximises the expected reduction
of entropy. The tree is constructed with recursive
partitioning of successive splits. A rule set can be
formulated by derivation of a rule for each path
from the tree�s root to a leaf node. Due to the
recursive growing strategy, DT tends to overfit
the training data, constructing a complex structure
of many internal nodes. Consequently, overfitting
is controlled through retrospective pruning proce-
dures for deleting redundant parts of rules [30,31].
Extending the case of binary classification, DT
permit the prediction of a conditional probability
of class membership using the concentration of
class +1 records within a node as a ranking crite-
rion. DT are robust to continuous or categorical
attributes in the sense that appropriate split crite-
ria for each scaling type exist [31].

2.3. Support vector machines

The original SVM can be characterised as a
supervised learning algorithm capable of solving
linear and non-linear binary classification prob-
lems. Given a training set with m patterns
fðxi; yiÞg

m
i¼1, where xi 2 X � Rn is an input vector

and yi 2 {�1, +1} its corresponding binary class
label, the idea of support vector classification is
to separate examples by means of a maximal mar-
gin hyperplane [32]. That is, the algorithm strives
to maximise the distance between examples that
are closest to the decision surface. It has been
shown that maximising the margin of separation
improves the generalisation ability of the resulting
classifier [33]. To construct such a classifier one has
to minimise the norm of the weight vector w under
the constraint that the training patterns of each
class reside on opposite sides of the separating sur-
face (see Fig. 2). Since yi 2 {�1, +1} we can for-
mulate this constraint as

yiððw � xiÞ þ bÞP 1; i ¼ 1; . . . ;m. ð1Þ

Examples which satisfy (1) with equality are called
support vectors since they define the orientation of
the resulting hyperplane.

To account for misclassifications, that is exam-
ples where constraint (1) is not met, the so called
soft margin formulation of SVM introduces slack
variables ni [32]. Hence, to construct a maximal
margin classifier one has to solve the convex qua-
dratic programming problem (2).

minw;b;n
1

2
kwk þ C

Xm

i¼1

ni

s.t.: yiððw � xiÞ þ bÞP 1� ni; i ¼ 1; . . . ;m.

ð2Þ

C is a tuning parameter which allows the user to
control the trade off between maximising the mar-
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gin (first term in the objective) and classifying the
training set without error. The primal decision
variables w and b define the separating hyperplane,
so that the resulting classifier takes the form

yðxÞ ¼ sgnððw� � xÞ þ b�Þ; ð3Þ
where w* and b* are determined by (2).

To construct more general non-linear decision
surfaces SVM implement the idea to map the input
vectors into a high-dimensional feature space via
an a priori chosen non-linear mapping function
U. Constructing a separating hyperplane in this
feature space leads to a non-linear decision bound-
ary in the input space. Expensive calculation of dot
products U(xi) ÆU(xj) in a high-dimensional space
can be avoided by introducing a kernel function
K(xi, xj) = U(xi) ÆU(xj) [32].

SVM requires specific postprocessing to model
conditional class membership probabilities; see
e.g. [35]. However, a ranking of customer instances,
as is usually required in direct marketing, can be
produced by removing the sign function in (3). This
gives the distance of an example to the separating
hyperplane which is directly related to the confi-
dence of correct classification [35]. Therefore, cus-
tomer instances that are further apart from the
separating surfaces receive a higher ranking.

Research of SVM in conjunction with DPP
focuses mainly on data reduction and feature
selection in particular, e.g. [36–38]. While some
work on the influence of scaling and discretisation
of continuous attributes [39–41] exists, the effect of
coding of categorical attributes has to our best
knowledge not been investigated.
3. Data preprocessing for predictive classification

3.1. Current research in data preprocessing

The application of each data mining algorithm
requires the presence of data in a mathematically
feasible format, achieved through DPP. Conse-
quently, DPP represents a prerequisite phase for
data mining in the process of knowledge discovery
in databases. DPP tasks are distinguished in data
reduction, aiming at decreasing the size of the
dataset by means of instance selection and/or fea-
ture selection, and data projection, altering the
representation of the data, e.g. mapping continu-
ous variables to categories or encoding nominal
attributes [8]. While some of these are imperative
for the valid application of a method, such as scal-
ing for NN, others appear to be more general to
facilitate method performance in general.

To evaluate the impact of DPP methods on clas-
sification accuracy and to derive best practices
within the domain, we conduct a structured litera-
ture review of publications in corporate data min-
ing applications of classification within the
related domains of target selection in direct mar-
keting, including case-based analyses as well as
comparative papers evaluating various algorithms
on multiple datasets [9]. We analyse each publica-
tion regarding the methods applied, whether
parameter tuning was conducted, and which DPP
methods of data reduction and projection could
be observed. The results of our analysis are pre-
sented in Table 1.

Our review documents the emphasis on evaluat-
ing and tuning competing classification algorithms
in a particular data mining task or dataset. In
addition, it shows only limited documentation
and almost no competitive evaluation of DPP
issues within data mining applications. Only 47%
of all studies use and document data reduction
approaches while only 64% consider data projec-
tion in general. Only a single publication provides
information on the treatment of categorical attri-
butes, although categorical variables are used
and documented in 71% of all studies and com-
monly encountered in the application and the data
mining domain in general. In contrast, informa-
tion on the respective procedures for parameter
tuning is provided in 16 out of 19 publications.
Most strikingly, across all surveys only a single
DPP technique is applied, ignoring possible alter-
natives without evaluation or justification. In data
projection, only [10,6] evaluate models incorporat-
ing discretised as well as standardised alternatives
of continuous attributes in their study. Standardi-
sation of continuous attributes are routinely
included in experimental setups [10], particularly
of NN, their use appears scarce. While the neces-
sity of DPP for data reduction is motivated by
the size of the individual dataset, all three authors



Table 1
Data preprocessing activities within publications on corporate data mining

Input
typea,b

Methodsc Parameter
tuning

Data
reductiond

Data projection

FS RS Continuous attributes Categories

Standardisation Discretisation Coding

[2] 2 BMLP, LR, LDA, QDA X X
[42] 1 MLP, LR, CHAID X X
[43] 2 MLP, RBF, LR, GP, CHAID X X
[44] 3 MLP, LR, LDA X X
[4] 2 CHAID, CART X
[6] 2 MLP, LR X X X X X
[9] 2 LVQ, RBF, 22 DT, 9 SC X X
[45] 2 LDA, LR, KNN, KDE,

CART, MLP, RBF,
MOE, FAR, LVQ

X X

[3] 1 MLP X X
[7] 2 LSSVM X X X
[11] 2 LR, LS-SVM, KNN, NB, DT X X X
[10] 1 LDA, QDA, LR, BMLP, DT,

SVM, LSSVM, TAN, LP,
KNN

X X

[46] 2 LR, MLP, BMLP X X
[47] 2 LSSVM, SVM, DT, RL, LDA,

QDA, LR, NB, IBL
X X

[48] 1 DT, MLP, LR, FC X
[49] 1 FC X X

a Type 1: only continuous; 2: continuous and categorical; 3: only categorical.
b Some publications provide no detailed information about the type or scaling level of their variables. Considering the fact that

demographic customer data consist mostly of categorical variables, we assume that any experiment that includes demographic
customer information together with transaction oriented data has to deal with continuous as well as categorical variables. Binary
variables are considered as categorical ones.

c BMLP: Bayesian learning MLP, CART: classification and regression tree, CHAID: Chi-square automatic interaction detection,
FAR: fuzzy adaptive resonance, FC: fuzzy classification, GP: genetic programming, IBL: instance based learning, KDE: kernel density
estimation, KNN: K-nearest neighbor, LDA: linear discriminant analysis, LP: linear programming, LR: logistic regression, LVQ:
learning vector quantisation, MLP: multilayer perceptron, MOE: mixture of experts, NB: Naı̈ve Bayes, QDA: quadratic discriminant
analysis, RBF: radial basis function NN, RL: rule learner, SC: statistical classifiers (e.g. LDA, LR, etc.), LSSVM: least squares SVM,
TAN: tree augmented Naı̈ve Bayes.

d FS: feature selection; RS: resampling.
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that make use of instance selection techniques
evaluate only one single procedure.

As the choices of DPP depend on the individual
dataset used, the lack of DPP may be contributed
to the use of ready preprocessed, �toy� datasets.
However, we may conclude that the potential
impact of DPP decisions on the predictive perfor-
mance of classification methods has neither been
analysed nor systematically exploited. Particular
recommendations exist for selected algorithm clas-
ses, which must not hold for other methods. How-
ever, only a single DPP scheme is utilised to
compare classifier performance, possibly biasing
the evaluation results. Consequently, the suitabil-
ity of different DPP approaches for different meth-
ods within a specific task, as well as the sensitivity
of data mining algorithms towards DPP in gen-
eral, requires further investigation. We present
an overview of the relevant methods in data reduc-
tion and data projection for DPP, which will later
be evaluated in a comprehensive experimental
setup.
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3.2. Data reduction

Data reduction is performed by means of feature
selection and/or instance selection. Feature selec-
tion aims at identifying the most relevant, explana-
tory input variables within a dataset [14]. In
addition to improving the performance of the pre-
dictors, feature selection facilitates a better under-
standing of the underlying process that generated
the data. Also, reducing the feature-vector con-
denses the size of the dataset, accelerating the task
of training a classifier and thereby increasing com-
putational efficiency [13]. Feature selection meth-
ods are categorised as wrappers and filters [50].
While filters make use of designated methods for
feature evaluation and construction, e.g. principal
component analysis [51] and factor analysis [52],
wrappers utilise the particular learning algorithm
to assess selected feature subsets heuristically by
means of the resulting prediction accuracy. In gen-
eral, wrapper-based approaches have proven more
popular for direct marketing applications; see e.g.
[3,7,12]. Feature selection appears to be well
researched and established in data mining practice
as for enhancing individual methods [13,14]. There-
fore we limit our experiments on the effects of less
analysed DPP choices, disregarding the impact of
feature selection from further analysis.

The selection of data instances through resam-
pling techniques often represents a prerequisite
for data mining, establishing computational feasi-
bility on large datasets or ensuring unbiased classi-
fication on imbalanced datasets. Particularly in
empirical domains of corporate response model-
ling, such as direct marketing, fraud detection,
etc., the number of instances in the interesting
minority class is significantly smaller than of the
majority class. For example, the number of cus-
tomers who respond to a mail offer is usually very
small compared to the overall size of a solicitation
[4,5,46] so that the target class distributions are
highly skewed. These imbalances obstruct classifi-
cation methods by biasing the classifier towards
the majority class [53] requiring specific DPP treat-
ment to diminish negative effects. Popular
approaches to account for imbalances without
modifying the classifier are random oversampling
of the minority class or random undersampling
of the majority class, respectively [54,55]. Addi-
tionally, sophisticated techniques have recently
been proposed, e.g. the removal of noisy, border-
line and redundant training instances of the major-
ity class [16] or the creation of new members of the
minority class as a mixture of two adjacent class
members [15].

3.3. Data projection

Data projection aims at transforming raw data
into a feasible, beneficial representation for a par-
ticular classification algorithm. It comprises tech-
niques of value transformation, e.g. mapping of
categorical variables and discretisation or scaling
of continuous ones. Working with large attribute
sets of mixed scale, data mining routinely encoun-
ters mixtures of categorical and continuous attri-
butes. Consequently, the combination of different
data projection approaches offers vast degrees of
freedom in the DPP stage.

Continuous attributes may be preprocessed
using various forms of discretisation or standar-
disation, of which we present the most common
variants. Discretisation or binning represents a
transformation of continuous attributes into a lim-
ited set of values (bins), thereby suppressing noise
and removing outlier values. Each raw value xi is
uniquely mapped to a particular symbol si, e.g.
si = 1 for xmin < xi 6 xc1, si = 2 for xc1 < xi 6 xc2,
si = 3 for xc2 < xi 6 xmax, thus deriving a set of
artificially created ordinal attributes from metric
variables. With a higher quantity of used symbols,
more details of the original attributes are captured
in the transformed dataset. Obviously, the result-
ing dataset depends on the definition of the critical
boundaries xc between two adjacent symbols. As
an unfavourable choice of values may lead to a
loss of meaningful information [40,41], the DPP
choice of discretisation is not without risk. Popular
variants of discretisation are analysed [18], con-
firming their relevance for classifier performance.
Alternatively, standardisation of continuous attri-
butes (4) ensures that all scaled attributes values x̂i

reside in a similar numerical range [21]:

x̂i ¼
xi � �xi

rxi

ð4Þ



Table 2
Schemes for encoding categorical attributes

Ordinal raw value N encoding N � 1
encoding

Thermometer encoding Ordinal encoding

x1 x2 x3 x1 x2 x1 x2 x3 x1

High 1 0 0 0 0 1 0 0 1
Medium 0 1 0 1 0 1 1 0 2
Low 0 0 1 1 1 1 1 1 3
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with mean �xi and standard deviation rxi of all real-
isations of attribute xi, this approach is sensitive to
outlier values but avoids the creation of additional
features that increase the dimensionality of the
dataset.

While variants for data projection of continu-
ous attributes receive selected attention, variants
for numerical mapping of categorical attributes
or data conversion are largely neglected. Several
encoding schemes are feasible, which are exempli-
fied in Table 2 for three ordinal values on a N

encoding, N � 1 encoding, thermometer code
and ordinal encoding scheme using one to three
binary (dummy) variables [8,19,56].

After mapping original data by means of rea-
sonable transformation rules and encoding
schemes, scaling procedures transform values of
each variable into an interval being appropriate
to a particular classification algorithm. Typical
intervals are [�1; 1] and [0; 1], either with binary
values only or with real values, depending on the
encoding scheme.
4. Case study of data preprocessing in direct

marketing

4.1. Experimental setup

We analyse the impact of individual DPP
choices on classification performance in a struc-
tured experiment, based upon the characteristics
of an empirical dataset from a previous direct
mailing campaign conducted in the publishing
industry. The objective is to evaluate customers
for cross-selling, identifying those most likely to
buy an additional magazine subscription from all
customers already subscribed to at least one peri-
odical. The original campaign contacted 300,000
customers, of which 4019 ordered a new subscrip-
tion. The response rate of 1.4% is considered
representative for the application domain. The
dataset characterises each customer instance by
28 attributes of nominal scale, e.g. flags identifying
email, previous merchandising treatment, etc., cat-
egorical scale, such as age group, order channel,
etc., and continuous scaling level, including the
total number of subscriptions, number of cancella-
tions, overall revenue, etc. The binary target vari-
able identifies a customer as one of the 4019
responders (1) or as a non-responder (�1). The
significantly skewed target class distribution and
the mixed scaling level of potentially valuable cus-
tomer attributes poses particular challenges to be
addressed using DPP. Therefore, projection of cat-
egorical attributes, discretisation or scaling of con-
tinuous ones as well as resampling are of primary
importance. Regarding the moderate number of
attributes, the wealth of previous research and
the scope of our analysis, we omit feature selection
from our study.

An explorative analysis reveals the presence of
outlier values in some of the continuous attributes,
e.g. customer instances with 253 inactive subscrip-
tions in contrast to and average of 0.8. As binning
may diminish the effect of outliers while scaling
remains sensitive to extreme values, we create
two sets of experiments implementing discretisa-
tion as in [18] versus standardisation. For categor-
ical attributes we consider the four encoding
schemes of Table 2. To evaluate possible effects
of scaling into different intervals, we run two sets
of experiment setups, scaling all attributes to
[0; 1] and [�1; 1], respectively. Finally, we evaluate
the impact of over- and undersampling [54] to
counter class imbalance between responders and



Table 3
Identification of experimental setups—sampling, encoding and scaling of attributes

Oversampling Undersampling

N N � 1 Temperat. Ordinal N N � 1 Temperat. Ordinal

0 �1 0 �1 0 �1 0 �1 0 �1 0 �1 0 �1 0 �1

Experiment #ID

Discretisation #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16
Standardisation #17 #18 #19 #20 #21 #22 #23 #24 #25 #26 #27 #28 #29 #30 #31 #32

No. of attributesa

Discretisation 117 117 90 90 117 117 29 29 117 117 90 90 117 117 29 29
Standardisation 88 88 70 70 88 88 29 29 88 88 72 72 88 88 29 29

a Varying attribute numbers result from applying different encoding schemes (see Table 2).

Table 4
Dataset size and structure for the empirical simulation—over-/
undersampling approaches

Data subset Data partition (number of records)

Oversampling Undersampling

Class 1 Class �1 Class 1 Class �1

Training set 20,000 20,000 2072 2072
Validation set 10,000 10,000 1035 1035
Test (hold-out) set 912 64,088 912 64,088
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non-responders, aiming to increase classifier sensi-
tivity for the economically relevant minority
class 1.

The resulting 32 experiments (Table 3) are eval-
uated applying a hold-out method, requiring three
disjoint datasets for training, validation and test-
ing. While training data is used to parameterise
each classifier, the second set is used for model
selection and to prevent overfitting through early
stopping for NN. The trained and selected classifi-
ers are tested out-of-sample on an unknown hold-
out set to evaluate their classification performance
as an indication of their ability to generalise on
unknown data. To ensure comparability all data-
sets contain the same records over all experiments,
differing only in data representation according to
the respective DPP treatment. To separate bal-
anced datasets, we randomly select 65,000 records
for the test set, leading to a statistically representa-
tive asymmetric class distribution of 1.4% respond-
ers (912 class 1) to 98.6% non-responders (64,088
class �1). In order to facilitate full usage of the
remaining 3107 responders, 66.6% (2072) are ran-
domly assigned to the training set with 33.3%
(1035) assigned to the validation set. Using strate-
gies of oversampling versus undersampling, differ-
ent sizes of the training and validation datasets are
created through resampling of responders and
non-responders until equally distributed class sizes
are achieved. In undersampling, 2072 records of
non-responders are randomly chosen for the train-
ing set until their number equals that of respond-
ing customers, with 1035 records for the
validation set, respectively. For oversampling,
20,000 and 10,000 records of inactive customers
are randomly chosen for the training and valida-
tion set, while responders are randomly duplicated
to equal the number of non-responders in each set.
The size of the individual data subsets is chosen to
balance the objective of learning to accurately pre-
dict responders from the training set while keeping
datasets computationally feasible. The resulting
datasets are summarised in Table 4.

4.2. Method parameterisation

Each experimental setup is evaluated using dif-
ferent parameterisations for each classifier to
account for possible interactions between method
tuning and the effects of the multifactorial design
of sampling, coding and scaling on predictive
performance.

With regard to the large degrees of freedom and
the considerable computational time of over 3
hours for MLP training, we conduct a pre-experi-
mental sensitivity analysis to heuristically identify
a suitable subset of parameters from hidden nodes,



Table 5
Confusion matrix for binary classification problem with output
domain {�1, +1}

Predicted class
P

�1 +1

Actual class �1 h00 h01 h0.

+1 h10 h11 h1.P
h.0 h.1 L
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activation functions, learning algorithms, etc. We
limit the experiments to architectures using
ni = 25 hidden nodes and two sets of activation
function in the hidden layer actj = {tanh, log},
using a softmax output-function on the two nodes
in the output layer to model the conditional prob-
ability of class membership for each pattern in
order to rank each customer instance according
to its probability of belonging to class 1. Each
NN is initialised four times and trained up to a
maximum of 10,000,000 iterations, evaluating the
performance on the validation set after every
epoch for early stopping. We apply the Delta–
Bar–Delta learning rule, using autoadaptive learn-
ing parameters for each weight wij to further limit
the degrees of freedom. For SVM modelling, we
consider alternative regularisation parameters C

in the range log(C) = {�3,�2,�1, 0} and kernel
parameters log(r2) = {�3,�2}, derived from a
previous grid search for a Gaussian kernel func-
tion. The selection of the Gaussian kernel is moti-
vated by previous results [57] and a pre-
experimental analysis, indicating computational
infeasibility of polynomial kernels with training
times of over 72 hours on the oversampled data-
sets. Degrees of freedom in C4.5 parameterisation
are mainly concerned with pruning, to guide the
process of cutting back a grown tree for better gen-
eralisation. We consider the standard pruning pro-
cedure together with reduced-error pruning and
vary the confidence threshold in the range of
{0.1, 0.2, 0.25, 0.3} [58].

We compute a total of 768 classifiers for each
data subset, relating to 256 results per NN, SVM
and DT each, and corresponding to 32 groups of
8 observations per dataset and method, i.e. 384
results for each scaling effect, 384 experiments
per sampling effect, 192 experiments per coding
effect of categorical attributes and 384 experiments
of coding continuous variables. This leads to a
total of 2304 classification results evaluated across
three performance measures in order to test the
effect of factors and factor combinations indepen-
dent of method parameterisation. All experiments
are carried out on 3.6 GHz Pentium IV worksta-
tion with 4GB main memory. The WEKA soft-
ware library [58] is used to model tree classifiers,
taking an average of 4 minutes to build a DT. In
contrast, parameterising SVM takes on average
20 minutes per experiment for undersampling
and 2 hours for oversampling using the LIBSVM
package [59]. MLP are trained using Neural
Works Professional II+, taking 25 minutes for
undersampling and on average 3 hours, depending
on the early stopping of each initialisation. In
total, experimental runtime consists of 34 days
excluding pre-experiments, setup and evaluation.

4.3. Performance metrics for method evaluation

A variety of performance metrics exists in data
mining, direct marketing and machine learning,
permitting an evaluation of DPP effects by alterna-
tive performance metrics. As certain metrics pro-
vide biased results for imbalanced classification
[60], we limit potential biases by evaluating the
impact of DPP on three alternative performance
metrics established in business classification prob-
lems [57]. Classifier performance is routinely
assessed using a confusion matrix of the predicted
and actual class memberships (see Table 5).

Performance metrics calculate means of the cor-
rectly classified records within each class to obtain
a single measure of performance such as arithmetic
(AM) or geometric mean (GM) classification rates

AM ¼ 1

2

h00

h0.
þ h11

h1.

� �
; GM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h00

h0.
� h11

h1.

� �s
. ð5Þ

While these performance metrics assess only the
capability of a binary classifier to separate the clas-
ses without error, they do not take a classifier�s
ability to rank instances by their probability of
class membership into consideration. As direct
marketing applications need to identify customers
ranked by the highest propensity to buy, given a



S.F. Crone et al. / European Journal of Operational Research 173 (2006) 781–800 791
varying constraint of the size of a possible mailing
campaign, a lift analysis reflects a more appropri-
ate approach to evaluate response models [53,61,
62]. Using a classifier to score customers according
to their responsiveness from most likely to least
likely buyers, the lift reflects the redistribution of
responders after the ranking, with superior classifi-
ers showing a high concentration of actual buyers
in the upper quantiles of the ranked list. Hence,
the lift evaluates a classifier�s capability to identify
potential responders and measures the improve-
ment over selecting customers for a campaign
at random. Given a ranked list of customers S
with known class membership a lift index is calcu-
lated as

Lift ¼ ð1:0 � S1 þ 0:9 � S2 þ � � � þ 0:1 � S10Þ
�X10

i¼1

Si

ð6Þ

with Si denoting the number of responders in the
ith decile of the ranked listed. An optimal lift pro-
vides a value of 1 with S1 ¼

P
iSi < 10%, while a

random selection of customers would result in a
lift of 50% [53].

We evaluate the impact of DPP on classifier
performance using the performance metrics of
AM, GM and lift index. As individual classifiers
use particular error metric to guide their parame-
terisation processes, such as early stopping of
NN on AM, or the selection of a best parameteri-
sation on the validation set, this may induce an
additional bias if evaluated on a inconsistent met-
ric. To confirm the robustness of our experiments
and the appropriateness of analysing the results
using a single performance metric, we analyse
Spearman�s rho non-parametric correlations
between the individual metrics across all experi-
ments and all datasets. The analysis reveals consis-
tent, positive correlations significant at a 0.01
level, indicating a mean correlation of 0.775
between GM, AM and lift index across all datasets
of training, validation and test for each method.
Consequently, the use of an arbitrary performance
metric seems feasible, utilising the AM for para-
meterisation where the lift metric is inapplicable
as an objective function. The lift is used for out
of sample evaluation across all methods to reflect
the business objective. In order to adhere to space
restrictions and to present results in a coherent
manner for both the direct marketing and the
machine learning domains, unless otherwise stated
we provide results using the out-of-sample lift
index. However, all presented results on the impact
of DPP upon the classification performance also
hold for alternative performance metrics.
5. Experimental results

5.1. Impact of data preprocessing across
classification methods

We calculate the lift index of SVM, NN and DT
across 32 experimental designs of different DPP
variants and across three datasets of training, val-
idation and test data, visualised in Fig. 3.

To quantify the impact and significance of each
DPP candidate on the classification performance
of different methods, we conduct a multifactorial
analysis of variance with extended multi compari-
son tests of estimated marginal means across all
methods and for each of the three methods sepa-
rately. The experimental setup assures a balanced
factorial design, modelling each DPP variant as
different factor treatment of equal cell sizes. Sam-
pling, scaling, coding of continuous attributes,
coding of categorical attributes and the method
are modelled as fixed main effects to test whether
the factor levels show different linear effects on
the dependent variables, the classification lift index
on the training, validation and test datasets. In
addition, we investigate ten 2-fold, ten 3-fold, five
4-fold and one 5-fold non-linear interaction effects
between factors. We consider factor effects as rele-
vant if they prove consistently significant at a 0.01
level of significance using Pillai�s trace statistic
across all datasets. In addition, a factor needs to
prove significant for the individual test set to
indicate an consistent out-of-sample impact inde-
pendent of the data sample. We disregard a signif-
icant Box�s test of equality and a significant
Levene statistic of indifferent group variances
due to the large dataset, equal cell sizes across
all factor-level-combinations and ex postanalysis
of the residuals revealing no violations of the
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Fig. 3. Boxplots of lift performance on the test sets for NN, DT and SVM across 32 experimental setups of sampling, scaling, coding
of categorical and coding of continuous attributes. Boxplots provide median and distributional information, additional symbols of
stars and circles indicate outliers and extreme values. Higher lift values indicate increased accuracy.
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underlying assumptions. The individual contribu-
tion of each main factor and their interactions to
explaining a proportion of the total variation is
measured by a partial eta squared statistic (g), with
larger values relating to higher relative impor-
tance. To contrast the impact of each factor levels
within each factor we conduct a set of posthoc
Table 6
Significance of DPP main effects by individual datasets and individua

Factors Significance by dataset

All Train Valid

Method 0.000** 0.000** 0.000**

Scaling 0.077 0.011* 0.092
Sampling 0.000** .000** 0.000**

Continuous coding .000** 0.000** 0.000**

Categorical coding 0.000** 0.000** 0.000**

* Significant at the 0.05 level (2-tailed).
** Highly significant at the 0.01 level (2-tailed).
multi comparison tests using Tamhane�s T2 statis-
tics, accounting for unequal variances in the factor
cells. This evaluates the positive or negative impact
of each factor level on the classification accuracy
of lift across the data subsets by estimated mar-
ginal means, mmi = {training; validation, test},
with positive impacts indicating increased accu-
l methods using Pillai�s trace

Significance by method

Test NN SVM DT

0.000** – – –
0.343 No No No
0.000** Yes Yes Yes
0.153 Yes No Yes
0.000** Yes Yes Yes
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racy and vice versa. Table 6 presents a summary of
the findings by dataset across all methods and for
each method individually.

The main factors of sampling (g = 0.958),
method choice (g = 0.392) and coding of categor-
ical attributes (g = 0.108) prove significant at a
0.01 level in the order of their relative impact,
while the effect of scaling and the coding of contin-
uous attributes prove just insignificant. In addi-
tion, all two-way interactions of the significant
main effects led by sampling * method (g =
0.404) and one three-way interaction of
method * sampling * categorical prove significant.
This confirms a significant impact of DPP through
different levels of sampling, coding of categorical
attributes and coding of continuous attributes on
out-of sample model performance for the case
study dataset. In addition, the significant impact
proves consistent across alternative methods.
However, no significant impact of different scaling
ranges for continuous and categorical variables
can be validated.

In order to determine the size and positive or
negative direction of each DPP choice upon classi-
fication performance, we analyse the treatments
of the significant factors in more detail. In addi-
tion, the analysis indicates interaction effects
between the used classification methods and
selected DPP factor levels of varying significance
and impact. As this indicates method specific reac-
tions to individual DPP factor levels, we need to
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Fig. 4. Estimated marginal means plots of the test set performance
undersampling (h) across different classification methods of NN, SV
analyse the impact of the factor effects in separate
multifactorial ANOVA analyses for each method.

5.2. Impact of sampling on method performance

To further investigate the significant impact of
over- versus undersampling we analyse the esti-
mated marginal means of the classification perfor-
mance for NN, SVM and DT separately.
Regarding undersampling, the results across NN,
SVM and DT are consistent and confirm an
increased performance across training and valida-
tion datasets and a severely decreased performance
on the test set. The impact of undersampling versus
oversampling for NN is estimated at mmNN =
{0.088; 0.081; �0.035}, indicating a �3.5% drop
in lift accuracy, for SVM at mmSVM = {0.071;
0.078; �0.068} and for DT at mmDT = {0.035;
0.033; �0.063}. As already a 1% increase in out-
of-sample accuracy is regarded as economically
relevant due to the highly asymmetric costs in the
problem domain, the use of undersampling would
induce a significant monetary loss. In addition,
the marginal means in Fig. 4 indicate a stronger
impact of undersampling on SVM and DT than
on NN.

Our analysis clearly identifies undersampling
as suboptimal to oversampling across all meth-
ods, leading to significantly increased yet irre-
levant in-sample performance at the cost of
decreased out-of-sample performance regardless
al Means of Lift valid

  Undersampling
  Oversampling
Sampling

Estimated Marginal Means of Lift test

DTVM

thod

DTSVMNN

Method

of two sampling factor treatments of oversampling (n) and
M and DT.



Table 7
Spearman�s rho non-parametric correlation coefficients between datasets for sampling variants

Spearman�s rho NN correlations SVM correlations DT correlations

Train Valid Test Train Valid Test Train Valid Test

Oversampling Train 1.000 0.912** 0.858** 1.000 0.594** 0.762** 1.000 0.778** 0.775**

Valid 0.912** 1.000 0.786** 0.594** 1.000 0.803** 0.778** 1.000 0.671**

Test 0.858** 0.786** 1.000 0.762** 0.803** 1.000 0.775** 0.671** 1.000

Undersampling Train 1.000 0.985** �0.307** 1.000 0.878** �0.540** 1.000 0.970** �0.626**

Valid 0.985** 1.000 �0.329** 0.878** 1.000 �0.631** 0.970** 1.000 �0.639**

Test �0.307** �0.329** 1.000 �0.540** �0.631** 1.000 �0.626 �0.639 1.000

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is highly significant at the 0.01 level (2-tailed).
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of the classification method. The selective increase
on in-sample performance indicates overfitting
instead of learning to generalising for unseen
instances from the training data. Regardless of
any computational advantages of undersampling
due to the reduced sample size, undersampling
seems inapplicable in contrast to the time demand-
ing oversampling for the case study dataset. In
addition to the inferior accuracy, undersampling
induces inconsistencies in selecting �best� candidate
parameterisations for each method. A correlation
analysis confirms high correlations between train-
ing, validation and test performance for oversam-
pling in contrast to a negative correlation on the
out of sample test set for undersampling, see Table
7.

Consequently, classifiers with a high perfor-
mance on out-of-sample data cannot reliably be
selected based upon superior in-sample perfor-
mance, indicating undersampling as unsuitable
for the given imbalanced classifications problem.
In contrast, oversampling promises a valid and
reliable selection of favourable SVM, NN or DT
parameterisations on the validation set to facilitate
a high out of sample performance. Considering the
lack of generalisation and suboptimal results, we
exclude undersampling from further analysis.

5.3. Impact of coding on method performance

After eliminating the dominating factor level of
undersampling from the analysis design, we evalu-
ate the effects of coding of categorical and contin-
uous variables across the three methods. Only the
coding of categorical variables remains significant
for SVM (g = 0.066). A multiple comparison test
confirms a negative impact of ordinal encoding
on SVM lift performance of mmSVM = {�0.014;
�0.002;�0.009} in contrast to a homogeneous
subset of all other categorical coding schemes of
N, N � 1 and temperature showing no significant
impact. This seems particularly surprising, consid-
ering the induced multicollinearity through N
encoding. Considering the insignificant differences
on classification performance by discretisation or
standardisation of continuous attributes, we derive
that SVM perform indifferent of binning of metric
variables, scaling in different intervals, and N,
N � 1 or temperature encoding of categorical
attributes on the given dataset.

In contrast to SVM, both the coding of contin-
uous attributes (g = 0.173) and the coding of cat-
egorical attributes (g = 0.131) have a significant
impact on NN out-of-sample accuracy at a 0.01
level, while no interaction of both coding schemes
is observed. An analysis of the marginal means
reveals a negative impact of standardisation of
continuous variables mmNN = {�0.011;�0.009;
�0.014} in contrast to discretisation. As with
SVM, a multiple comparison test of individual
factor levels of categorical coding reveals two
homogeneous subsets and a significant, negative
impact of ordinal encoding on lift accuracy of
mmNN = {�0.013;�0.006;�0.024}. The negative
impact of ordinal coding is considerably larger
than for SVM, confirming NN sensitivity to ordi-
nal coding [19]. The impacts of all other factor lev-
els of N, N � 1 and temperature coding prove
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insignificant. Scaling of variables remains insignif-
icant for NN performance. These results seem
interesting, considering the frequent assumption
that NN learning may benefit from metric vari-
ables, and that the limited research conducted by
[19] indicates the benefits of scaling to [�1; 1] inter-
vals. More specifically, it indicates a dataset
specific need for analysis of DPP choices in using
NN.

For DT only categorical coding of attributes
(g = 0.350) and its interaction with different con-
tinuous codings (g = 0.280) prove significant, while
the main effects of continuous coding or scaling are
not significant. In contrast to SVM and NN, an
analysis of the marginal means provides inconsis-
tent results, indicating a small but significant
decrease in performance of N � 1 coding of
mmDT = {�0.004;�0.001;�0.004} in contrast to
N-coding, a significant increase in performance of
temperature encoding of mmDT = {0.003; 0.004;
0.004} in contrast to N-coding and no significant
impact of ordinal encoding. This is attributed to
an observed interaction effect of categorical with
continuous encoding, as apparent in Fig. 5 at
method DT. While no impact is apparent for stan-
dardised continuous attributes, a strong negative
effect of N and N � 1 encoding becomes visible
for discretised continuous attributes, contrasted
by a strong positive effect on the accuracy using
temperature or ordinal coding.
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discretisation (s) and standardisation (�) across different categorical
for each method of NN, SVM and DT.
In contrast, the plots of marginal means show
no interaction between coding categorical and
continuous attributes for NN and SVM, with con-
sistently inferior classification results of standardi-
sation for NN but not for SVM. While the impact
of scaling remains statistically insignificant for all
methods, our analysis indicates that scaling to
the interval [0; 1] consistently improves out of sam-
ple accuracy across NN and SVM, while leaving
DT unaffected. However, these results are just
insignificant at a 0.05 level. In addition, interac-
tions of scaling, continuous coding and categorical
coding emerge for NN. For all standardised and
discretised attributes of interval scale, all categori-
cal coding schemes improve test lift when scaled to
[0, 1]. However, N encoding of discretised attri-
butes displays pre-eminent performance when
scaled to [�1; 1], while scaling to [0, 1] decreases
out of sample accuracy by 1.5%. In contrast,
SVM and DT are generally unaffected by these
interaction effects.

5.4. Implications of data preprocessing impact on

method performance

As a conclusion from the analysis across vari-
ous alternative architectures and parameterisa-
tions, we determine undersampling to be inferior
DPP alternative for NN, SVM and DT. Ordinal
coding of categorical variables appears to be a
 = SVM
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on the test set resulting from continuous coding schemes of
coding schemes of N, N � 1, temperature and ordinal encoding,
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suboptimal DPP choice for SVM and NN but has
no effect on DT classification. Standardisation of
continuous attributes is inferior to discretisation
for NN, given the case study dataset induced by
outliers in the data. As neither temperature scal-
ing, N nor N � 1 coding of categorical attributes
show a significant impact on classification perfor-
mance across datasets and methods, we propose
the use of N � 1 encoding. N � 1 encoding
reduces the size of the input vector, resulting in a
lower dimensional classification domain and
increased computationally efficiency through
reduced training time. Accordingly, we propose
standardisation of continuous attributes to reduce
input vector length in the lack of negative effect on
SVM or DT performance, but not for NN. On the
contrary, discretisation of attributes paired with
N � 1 encoding should be avoided for DT. While
scaling to [0, 1] generally suggests slightly increased
performance across all methods and other DPP
choices, this in combination with the computation-
ally motivated preference of N � 1 encoding
would simultaneously avoid significantly dec-
reased NN-performance resulting from the inter-
action effect with scaling for discretised attributes.
To summarise, NN provide best results on the
given dataset when continuous data is discretised
to categorical scale, N-encoded and scaled to
[�1; 1] using oversampling. In contrast, SVM ben-
efit from standardised continuous attributes,
N � 1 encoding of categorical attributes and scal-
ing to [0, 1] while DT are indifferent and may use
the same scheme as SVM.

We conclude that in avoiding undersampling
and ordinal coding, SVM as NN offer a robust
out-of-sample performance equal or better to
DT, which is not significantly influenced by pre-
processing through different coding or scaling of
variables. However, these findings suggest method
specific best practices in using DPP to facilitate out
of sample performance for different classification
methods. Moreover, it implies that different learn-
ing classifiers may produce suboptimal results if
they are all evaluated on a single, identical dataset
with a single, implicit decision for DPP. Therefore,
we eliminate the impact of different method
parameterisations and evaluate DPP impact on a
selected �best� architecture for NN, SVM and DT.
5.5. Impact of data preprocessing on best

classifier architectures

After analysing the effect of DPP across differ-
ent parameterisations of each method, we omit
the impact of modelling decisions from our analy-
sis by selecting a single �best� architecture for NN,
SVM and DT. We select the method setup from
the experiments 1–6 and 17–22, avoiding biased
results from suboptimal DPP methods of under-
sampling and single number encoding found in
our preceding analysis. In addition, we identify a
single architecture setup for each method based
upon the highest mean lift performance on the val-
idation data subset. For NN, we select a topology
of 25 hidden nodes in a single hidden layer using a
hyperbolic tangent activation function. We apply a
DPP scheme from experiment setup #2, discretis-
ing continuous variables and scaling all N � 1
encoded attributes to [�1, 1], leading to a lift per-
formance of 0.640 on the test set. For SVM, we
select DPP scheme #19, standardising continuous
variables, encoding all categorical as N � 1 and
scaling them to [0, 1]. For DT we apply the same
DPP scheme #19, resulting in an out-of-sample lift
of 0.619. SVM demonstrate best performance,
achieving a lift of 0.645 on the test set.

However, these results are based upon our pre-
ceding analysis of different DPP variants across
all methods and the individual matching of DPP
to method. To relate our findings to the effects of
DPP on the validity and reliability of results pro-
vided in incomplete case studies from our literature
analysis, we need to simulate the effect of choosing
a single, arbitrary DPP combination of scaling and
coding. Consequently, we analyse the lift perfor-
mance of the 12 dominant DPP setups for SVM,
NN and DT across all three data subsets. A succes-
sive multivariate ANOVA reveals limited differ-
ences of the classification performance between
SVM, NN and DT at a 0.05 level. Although an
average SVM lift of 0.634 outperforms the mean
NN lift of 0.627 by 0.7% and a DT mean lift of
0.616 by 1.8% on the out-of-sample test set, these
results prove not significant. An analysis of esti-
mated marginal mean reveals two homogeneous
subgroups. DT perform significantly inferior on
out-of-sample than NN or SVM, with mmDT =
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{0.049; 0.043;�0.011} and mmDT = {0.021; 0.042;
�0.018}, respectively. While the mean perfor-
mances of SVM and NN are significantly different
across training and validation datasets, no signifi-
cant difference can be confirmed in out-of-sample
accuracy (see Fig. 6).

We conclude that SVM and NN significantly
outperform DT on the case study dataset, repre-
senting a valuable monetary benefit considering
the costs attributed to the imbalanced classes in
the case study domain. However, neither SVM
nor NN significantly outperform each other across
different choices of coding of continuous attributes,
coding of categorical attributes or scaling. The lack
of significant differences between SVM and NN
accuracy seems unsurprising in the light of recent
publications inconsistently identifying one method
as superior over the other, presenting a different
winner from one empirical case study to the next.
Our experiments indicate one potential influence:
the variance induced by different DPP choices
towards the out-of-sample performance of NN
and SVM. An analysis of the variance of the out-
of-sample performances of each method induced
by DPP reveals a significant difference, confirmed
by Levene�s test of equality at a 5% level. While
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patterns of method superiority across performance metrics.
NN provide a reduce mean performance, they also
show a reduced variance of the classification per-
formance across competing DPP, indicating more
robust results in comparison with increased DPP
sensitivity of SVM. SVM provide not only a larger
variance of the results, but also promise a higher
maximum performance against the risk of a lower
minimum performance than NN. Two thirds of
the 95% interval of NN lift ranges, from 0.622 to
0.633, overlap with the SVM results from 0.629
to 0.640. Therefore, SVM incorporate all potential
NN performances and most mean performances
within their range of results, depending on an indi-
vidual DPP choice. In contrast, the DT interval of
0.611–0.622 clearly proves inferior considering not
only mean performance but also robustness of per-
formance across DPP choices. The results prove
consistent across different performance metrics of
lift, arithmetic mean classification accuracy and
geometric mean classification accuracy, provided
in Fig. 6. This implies that comparing in-sample
and out-of-sample performance between SVM
and NN based upon a particular, arbitrarily moti-
vated DPP choice of coding and scaling on a given
dataset may lead to arbitrary results of superior
performance of a method, favouring either SVM
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or NN. Although these results are not valid across
all possible datasets, they support the importance
of DPP decisions with regard to model evaluation.
As a consequence, the individual performance of
SVM or NN may be increased by evaluating alter-
native coding, scaling and novel sampling schemes.

Moreover, the variation induced by DPP
choices for each classification method is larger than
the differences between the methods mean perfor-
mance. In particular, the impact of DPP on NN
and SVM accounts for 50–70% of the variation in
accuracy induced by selecting optimal NN archi-
tectures, with an average increase of 0.016 through
selecting the correct activation function, or SVM
parameters, with the impact of selecting significant
r- and C-parameters between 0.004 and 0.021.
Considering the variability of performances for
SVM and NN depending on adequate DPP, an
analysis of alternative preprocessing methods
may prove more beneficial in increasing classifier
performance than the evaluation of alternative
classification methods also sensitive to preprocess-
ing decisions. It is generally accepted within data
mining as in operational research, that to derive
sound classification results on empirical datasets,
alternative candidate methods need to be evalu-
ated, as no single method may be considered gener-
ally superior. In addition, our experimental results
suggest that avoiding the evaluation of different
DPP variants in the experimental designs may limit
the validity and reliability of results regarding
method performances, possibly leading to an arbi-
trary method preference.
6. Conclusions

We investigate the impact of different DPP
techniques of attribute scaling, sampling, coding
of categorical and continuous attributes on classi-
fier performance of NN, SVM and DT in a case-
based evaluation of a direct marketing mailing
campaign. Supported by a multifactorial analysis
of variance, we provide empirical evidence that
DPP has a significant impact on predictive
accuracy. While certain DPP schemes of under-
sampling prove consistently inferior across classifi-
cation methods and performance metrics, others
have a varying impact on the predictive accuracy
of different algorithms.

Selected methods of NN and SVM prove
almost as sensitive to different DPP schemes as
to the evaluated method parameterisations. In
addition, the differences in mean out-of-sample
performance between both methods prove small
and insignificant in comparison to the variance
induced by evaluating different DPP schemes
within each method. This indicates the potential
for increased algorithmic performance through
effective, method specific preprocessing. Further-
more, an analysis of DPP approaches may not
only increase classifier performance of SVM and
NN, it may even indicate a higher marginal return
in analysing the individual classifiers regarding dif-
ferent DPP alternatives than the conventional
approach of evaluation competing classification
methods on a single, preprocessed candidate data-
set of DPP. Consequently, the choice of a �supe-
rior� algorithm may be supported or even
replaced by the evaluation of a �best� preprocessing
approach. Additionally, the performance of NN
and SVM across DPP schemes falls within a simi-
lar range of predictive accuracy. This suggests that
if a dataset is preprocessed in a particular way to
facilitate performance of a specific classifier, the
results of other classifiers may be negatively biased
or produce arbitrary results of method perfor-
mance. If arbitrary DPP schemes are selected,
method evaluation may exemplify the superiority
of an arbitrary algorithm, lacking validity and reli-
ability and leading to inconsistent research find-
ings. If however different DPP schemes are
evaluated to facilitate the performance of a
favoured classifier, the results may even be biased
towards prove of his dominance.

The single case-based analysis of DPP prohibits
generalised conclusions of enhanced method per-
formance. Considering the almost prohibitive run-
time of our experiments on a single dataset, the
evaluation on a variety of dissimilar datasets
may be infeasible. Additional research may extend
the analysis towards a larger set of DPP schemes
for selected methods and across different artificial
and empirical datasets. However, the significant
impact on this representative case raises questions
for the validity and reliability of current method



S.F. Crone et al. / European Journal of Operational Research 173 (2006) 781–800 799
selection practices. The presented results justify the
structured analysis of competing sampling, coding
and scaling methods—currently neglected from
systematic analysis—in order to derive valid and
reliable results of the performance of classification
methods.
References

[1] E.L. Nash, The Direct Marketing Handbook, second ed.,
McGraw-Hill, New York, 1992.

[2] B. Baesens, S. Viaene, D. Van den Poel, J. Vanthienen, G.
Dedene, Bayesian neural network learning for repeat
purchase modelling in direct marketing, European Journal
of Operational Research 138 (1) (2002) 191–211.

[3] S. Viaene, B. Baesens, D. Van den Poel, G. Dedene, J.
Vanthienen, Wrapped input selection using multilayer
perceptrons for repeat-purchase modeling in direct market-
ing, International Journal of Intelligent Systems in Account-
ing, Finance and Management 10 (2) (2001) 115–126.

[4] D. Haughton, S. Oulabi, Direct marketing modeling with
CART and CHAID, Journal of Direct Marketing 11 (4)
(1999) 42–52.

[5] J. Zahavi, N. Levin, Issues and problems in applying
neural computing to target marketing, Journal of Direct
Marketing 11 (4) (1999) 63–75.

[6] J. Zahavi, N. Levin, Applying neural computing to target
marketing, Journal of Direct Marketing 11 (4) (1999) 76–93.

[7] S. Viaene, B. Baesens, T. Van Gestel, J.A.K. Suykens, D.
Van den Poel, J. Vanthienen, B. De Moor, G. Dedene,
Knowledge discovery in a direct marketing case using least
squares support vector machines, International Journal of
Intelligent Systems 16 (9) (2001) 1023–1036.

[8] D. Pyle, Data Preparation for Data Mining, Morgan
Kaufmann, San Francisco, 1999.

[9] T.-S. Lim, W.-Y. Loh, Y.-S. Shih, A comparison of
prediction accuracy, complexity, and training time of
thirty-three old and new classification algorithms, Machine
Learning 40 (3) (2000) 203–228.

[10] B. Baesens, T. Van Gestel, S. Viaene, M. Stepanova, J.
Suykens, J. Vanthienen, Benchmarking state-of-the-art
classification algorithms for credit scoring, Journal of the
Operational Research Society 54 (6) (2003) 627–635.

[11] S. Viaene, R.A. Derrig, B. Baesens, G. Dedene, A
comparison of state-of-the-art classification techniques
for expert automobile insurance claim fraud detection,
Journal of Risk and Insurance 69 (3) (2002) 373–421.

[12] Y.S. Kim, W.N. Street, G.J. Russell, F. Menczer, Customer
targeting: A neural network approach guided by genetic
algorithms, Management Science 51 (2) (2005) 264–
276.

[13] S. Piramuthu, Evaluating feature selection methods for
learning in data mining applications, European Journal of
Operational Research 156 (2) (2004) 483–494.
[14] J. Yang, S. Olafsson, Optimization-based feature selection
with adaptive instance sampling, Computers and Opera-
tions Research, in press.

[15] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer,
SMOTE: Synthetic minority over-sampling technique,
Journal of Artificial Intelligence Research 16 (2002) 321–
357.

[16] M. Kubat, S. Matwin, Addressing the curse of imbalanced
training sets: One-sided selection, in: Proceedings of the
14th International Conference on Machine Learning, 1997.

[17] P. Berka, I. Bruha, Empirical comparison of various
discretization procedures, International Journal of Pattern
Recognition and Artificial Intelligence 12 (7) (1998) 1017–
1032.

[18] U.M. Fayyad, K.B. Irani, On the handling of continuous-
valued attributes in decision tree generation, Machine
Learning 8 (1) (1992) 87–102.

[19] W.S. Sarle, Neural Network FAQ, 2004, Downloadable
from website ftp://ftp.sas.com/pub/neural/FAQ.html.

[20] S. Zhang, C. Zhang, Q. Yang, Data preparation for data
mining, Applied Artificial Intelligence 17 (5/6) (2003) 375–
381.

[21] C.M. Bishop, Neural Networks for Pattern Recognition,
Oxford University Press, Oxford, 1995.

[22] J.A.K. Suykens, J. Vandewalle, Nonlinear Modeling:
Advanced Black-box Techniques, Kluwer, Dordrecht,
1998.

[23] K.A. Smith, J.N.D. Gupta, Neural networks in business:
Techniques and applications for the operations researcher,
Computers and Operations Research 27 (11–12) (2000)
1023–1044.

[24] K.A. Krycha, U. Wagner, Applications of artificial neural
networks in management science: A survey, Journal of
Retailing and Consumer Services 6 (1999) 185–203.

[25] B.K. Wong, V.S. Lai, J. Lam, A bibliography of neural
network business applications research: 1994–1998, Com-
puters and Operations Research 27 (11–12) (2000) 1045–
1076.

[26] B.K. Wong, T.A. Bodnovich, Y. Selvi, Neural network
applications in business: A review and analysis of the
literature (1988–1995), Decision Support Systems 19 (4)
(1997) 301–320.

[27] R.D. Reed, R.J. Marks, Neural Smithing: Supervised
Learning in Feedforward Artificial Neural Networks, MIT
Press, Cambridge, 1999.

[28] J.P. Bigus, Data Mining with Neural Networks: Solving
Business Problems from Application Development to
Decision Support, McGraw-Hill, New York, 1996.

[29] M.W. Craven, J.W. Shavlik, Using neural networks for
data mining, Future Generation Computer Systems 13 (2–
3) (1997) 211–229.

[30] J.R. Quinlan, C4.5: Programs for Machine Learning,
Morgan Kaufmann, San Mateo, 1993.

[31] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification,
second ed., Wiley, New York, 2001.

[32] N. Cristianini, J. Shawe-Taylor, An Introduction to
Support Vector Machines and Other Kernel-based Learn-



800 S.F. Crone et al. / European Journal of Operational Research 173 (2006) 781–800
ing Methods, Cambridge University Press, Cambridge,
2000.

[33] V.N. Vapnik, The Nature of Statistical Learning Theory,
Springer, New York, 1995.

[34] C.J.C. Burges, A tutorial on support vector machines for
pattern recognition, Data Mining and Knowledge Discov-
ery 2 (2) (1998) 121–167.

[35] J.C. Platt, Probabilities for support vector machines, in: A.
Smola, P. Bartlett, B. Schölkopf, D. Schuurmans (Eds.),
Advances in Large Margin Classifiers, MIT Press, 1999,
pp. 61–74.

[36] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T.
Poggio, V. Vapnik, Feature selection for SVMs, in:
Proceedings of the Annual Conference on Neural Infor-
mation Processing Systems, 2000.

[37] G. Fung, O.L. Mangasarian, Data selection for support
vector machine classifiers. in: Proceedings of the 6th
International Conference on Knowledge Discovery and
Data Mining, 2000.
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