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Modelling artificial neural networks for accurate time series prediction poses multiple challenges, in

particular specifying the network architecture in accordance with the underlying structure of the time

series. The data generating processes may exhibit a variety of stochastic or deterministic time series

patterns of single or multiple seasonality, trends and cycles, overlaid with pulses, level shifts and

structural breaks, all depending on the discrete time frequency in which it is observed. For heterogeneous

datasets of time series, such as the 2008 ESTSP competition, a universal methodology is required for

automatic network specification across varying data patterns and time frequencies. We propose a fully

data driven forecasting methodology that combines filter and wrapper approaches for feature selection,

including automatic feature evaluation, construction and transformation. The methodology identifies

time series patterns, creates and transforms explanatory variables and specifies multilayer perceptrons

for heterogeneous sets of time series without expert intervention. Examples of the valid and reliable

performance in comparison to established benchmark methods are shown for a set of synthetic time

series and for the ESTSP’08 competition dataset, where the proposed methodology obtained second place.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Artificial neural networks (NN) have found increasing con-
sideration in forecasting research and practice, leading to over
5000 academic publications indexed by ISI [1]. However, despite
their proven theoretical capabilities of non-parametric, data
driven universal approximation of any linear or nonlinear function
[2], NN have not been able to confirm their potential against
established statistical methods, such as ARIMA or Exponential
Smoothing [3] in objective, empirical competitions on large sets of
time series. The resulting gap between the theoretical capabilities,
empirical accuracy and robustness in automatic applications of
NNs has led to increased research activities to explore the
empirical accuracy of NNs under different data conditions in a
number of forecasting competitions (see e.g. the NN3, NN5, and
the annual ESTSP competitions). Evidence from the algorithms
employed in prior competitions has shown a myriad of unique
approaches to specify NNs for time series prediction. A possible
explanation is given by the many degrees of freedom offered by
NN architectures, which must be chosen in the modelling process
in interaction with the underlying data: from the selection of the
information processing within each node (i.e. specifying input and
activation functions), the selection of input, hidden and output
nodes, structure and recurrencies of the connection-weights to
ll rights reserved.
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combine nodes in adequate network topologies, to learning
algorithms and parameters and choices made in preceding stages
of data sampling and pre-processing. Consequently, the valid and
reliable specification of NNs for a given time series is often
considered as much an art as science, limiting the automation of
NN modelling and implementation.

Previous research indicates that the automatic identification of
the most relevant input variables to approximate an unknown
data generating process, i.e. feature selection on time series data,
poses one of the key challenges in automatic model specification
of NNs [1,4]. The importance of input variable and lag selection is
evident, as the input vector needs to capture all characteristics of
complex time series, including the components of deterministic
or stochastic trends, cycles and seasonality, interacting in a linear
or nonlinear model with pulses, level shifts, structural breaks and
different distributions of noise. Furthermore, the amount and
complexity of time series patterns varies with the time series
domain and sampling frequency of the data, from low frequency
data recoded in quarterly or monthly intervals to high frequency
time series of weekly, daily or intraday data. As empirical datasets
often contain multiple time series with distinct properties and
components, they require individual identification, specification
and prediction. Despite recent interest in modelling NNs for time
series with seasonal and trend components [5], these normally
assume a given and known seasonal form for a set of synthetic
time series. In contrast, of the 3003 time series of the M3-
competition [3] each monthly time series contained different
forms of monthly, quarterly or no seasonality, different forms of
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trend and frequent outliers, level shifts, etc. that require
individual identification and hence an automated methodology.
A number of methodologies have been proposed for feature
evaluation of NNs, including filter-based approaches employing
statistical tests such as stepwise regression, autocorrelation or
spectral analysis, in addition to wrappers employing a stepwise
search of feasible model candidates using the increasingly
available computational power. However, no single methodology
has been proven to perform well consistently across varying data
conditions [6], given their individual shortcomings. Linear
statistical tests fail in identifying nonlinear interdependencies,
and bias the results of nonlinear NNs, often provide ambiguous
results for multiple seasonalities and are prone to overspecifica-
tion on large datasets and high frequency data. Similarly, wrapper
based approaches often prove inefficient, as they reach the limits
of available computational power with the growing number of
possible feature combinations. In the absence of valid and reliable
evaluations, there currently exists no consensus on what
methodology should be applied under which data conditions
[7], in particular for unknown time series frequency and multiple
overlying seasonality [8].

While some time series components have been successfully
addressed by feature selection methodologies, e.g. identifying
only the most relevant lagged realisations of the dependent
variable, in feature evaluation others may require feature
construction of explanatory dummy variables with adequate
time-delays, depending on the stochastic or deterministic beha-
viour of each component. For multivariate modelling the
specification of correct contemporaneous or lagged realisations
of the dependent variable, and/or multiple explanatory variables
provides an even bigger challenge [9]. These challenges determine
the desirable properties of a necessary methodology of feature
selection to specify the input vector of NNs: fully automatic (a)
feature evaluation of unknown time series components of level,
trend and seasonality of arbitrary length, magnitude or type, (b)
feature construction to capture deterministic and/or stochastic
time series patterns through explanatory variables, (c) feature
transformation for adequate pre-processing of chosen input
variables, and (d) network architecture selection. The resulting
methodology should be able to approximate any unknown data
generating process for each time series without the need of
domain knowledge or expert intervention. To address this
challenge, we propose a fully automatic methodology to specify
multilayer perceptrons (MLP), founded on best practices of filters
and wrappers from statistics and computational intelligence. The
methodology is centred around an iterative neural filter, which
combines a simple graphical tool of analysing the Euclidian
distance in seasonal year-on-year-plots frequently employed by
forecasting practitioners with an iterative specification of an MLP
as a non-parametric filter for automatic feature evaluation and
time series identification. In addition, we propose a series of
subsequent wrappers for feature construction of explanatory
dummy time series, feature transformation in the form of time
series differencing, and to determine the MLP architecture.

The paper is organized as follows. First, we briefly introduce
NNs in the context of time series forecasting to derive the
particular importance of input vector specification and discuss
challenges in conventional methodologies for feature selection on
low and high frequency data. Sections 3 and 4 introduce the
proposed methodology: Section 3 specifies the iterative neural
filter for feature evaluation, which is embedded in a series of
wrappers for feature construction and transformation specified in
Section 4. Section 5 provides details on the submission to the
ESTSP’08 competition in specifying the experimental design,
models used and preliminary results obtained. Finally, we provide
conclusions and future work in Section 6.
2. Modelling neural networks for forecasting

2.1. Time series prediction with multilayer perceptrons

Forecasting with NNs requires the specification of a hetero-
associative NN architecture in order to approximate and extra-
polate the underlying data generating process. The NN
architecture determines the relationship ŷ¼ f(X,Y) between a
vector of past time series information of independent X and/or
dependent Y variables and future predicted values of a dependent
variable ŷ. Due to the many degrees of freedom in specifying NNs
in time series forecasting, we present a brief introduction; a
general discussion is given in [10,11].

In model specification, the variables (measured at discrete
time intervals) included in the input vector determine the model
form in accordance with statistical forecasting models. Including
only n lagged realisations of the dependent variable yt�n in
the input vector, ŷt + 1¼ f(yt, yt�1,y, yt�n +1), constructs a NN for
time series forecasting. For models using only m explanatory
variables xm of metric or nominal scale, the NN is constructed for
causal forecasting, estimating a functional relationship of the
form ŷ¼ f(x1, x2,y, xm). By combining contemporaneous and
lagged realisations of the independent variables xm,t�n and lagged
dependent variables yt�n more general models of dynamic
regression, autoregressive (AR) transfer functions and interven-
tion models are constructed. To extend beyond the autoregressive
models of feedforward architectures, recurrent architectures
allow the inclusion of moving average components (MA) of past
model errors in analogy to the ARIMA Methodology [12], enabling
a large class of nonlinear dynamic regression models to be
constructed using NNs [13]. Forecasting time series with NN
conventionally employs a feedforward topology of the established
multilayer perceptron (MLP) in analogy to an nonlinear auto-
regressive model of order p, NAR(p) [1,14], to which we will also
limit our analysis. In time series prediction with MLPs, for a point
in time t a h-step ahead forecast ŷt + h is computed using n¼p

lagged observations yt, yt�1,y, yt�n +1 from n preceding points in
time t, t�1, t�2,y, t�n+1, with n¼ I denoting the number of
input units of the MLP. The functional form of a single layered
MLP with a single output node for is

f ðY ,wÞ ¼ b0þ
XH

h ¼ 1

bhgðg0iþ
XI

i ¼ 1

ghiyiÞ, ð1Þ

with Y¼[yt, yt�1,y, yt� I +1] the vector of the lagged observations
of the time series providing the network inputs. The network
parameters are denoted as weights w¼(b,g), b¼[b1, b2,y,bH]
and g¼[g11, g12,y, g21,y, ghI] for the output and the hidden
layer, respectively, with b0 and g0i denoting the biases of each
node. I and H specify the number of input and hidden units in the
network and g( � ) is a nonlinear transfer function [15], conven-
tionally using the sigmoid logistic or hyperbolic tangent functions
[1]. Consequently, each hidden node h computes a NAR(p) model
on the p¼ I input nodes, which are combined to ŷ by a weighted
sum of a single output node (although multiple outputs are
feasible). A MLP architecture is displayed in Fig. 1.

The task of the NN is to model the underlying generator of the
data during training (parameterisation), so that a valid forecast is
made when the trained NN is subsequently presented with a new,
previously unseen input vector (generalisation) [16]. For para-
meterisation, data is presented to the MLP as a randomised set of
input vectors of fixed length I formed as a sliding, overlapping
window over the time series observations. The weights are
adjusted by minimising the differences between network output
and actuals measured by an objective function (predominantly
the sum of squared errors) across all input vectors, whereby
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Fig. 1. Autoregressive MLP for time series forecasting.
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the learning algorithm only serves to minimise the objective
function given the input and output patterns for a given
network architecture. Consequently, the specification of the
network architecture in general, as determined through
the network topology (i.e. the size and structure of the input
layer I, the size H of one or more hidden layers, the number of
output nodes oj), the signal processing within nodes (i.e. the
choice of activation functions g(�)), and the information proces-
sing between nodes (i.e. the connectivity of the weights w with or
without feedback and the activation strategy), and the input
vector in particular, determines the fundamental capability of the
MLP to capture, approximate and extrapolate the time series
components from the data generating processes.

To specify these meta-parameters for forecasting, the majority
of publications to date employ a variety of trial-and-error
approaches and simple heuristic rules. However, only limited
empirical evidence exists that the proposed heuristics resolve the
problem of architecture specification [17–19], but rather result
in inconsistent best practices that harm the reliability of their
forecasts on different data [1,6], rendering most heuristics of
limited value. To better guide the specification of NN for
forecasting, a number of methodologies have been proposed in
the form of either filters or wrappers [20]. In contrast to heuristic
rules, methodologies provide a coherent and consistent procedural
structure to modelling NNs depending on the underlying data
conditions, and allow replication. Methodologies have been
developed both for modeling generic data [18,21–25] or for
specific data properties including financial data [26,27], telecom-
munication data [18], etc. (for an introductory discussion see [1]).
However, to date no methodology has been universally accepted
to guide the architecture specification of MLPs for time series
prediction. As prior research has identified the specification of the
input vector as being crucial to achieving valid and reliable results,
methodologies for feature selection are discussed in more detail.
2.2. Challenges in feature selection for time series data

Feature selection aims at identifying the most relevant input
variables within a dataset [28]. It improves the performance of the
predictors by eliminating irrelevant inputs (and hence noise),
achieves data reduction for accelerated training and increased
computational efficiency [29], and often facilitates a better
understanding of the underlying process that generated the data.
In order to present features in the most suitable (often
parsimonious) format, feature selection is comprised of feature
evaluation, feature construction and feature transformation. For
time series data, feature evaluation aims at detecting those input
variables and dynamic lags that capture the regular time series
components of level, trend and/or (single or multiple overlying)
seasonality, while remaining adaptive to change of stochastic
components and robust against outliers and noise. Feature
construction considers the creation of new features from the
input variables, e.g. through principal component or factor
analysis, or in the form of exogenous dummy variables to
explicitly model time series components. Feature transformation
in time series aims at adequate pre-processing of features in order
to facilitate better modelling, e.g. by differencing to remove trends
or seasonality. As time series of similar frequency and domain
may exhibit different patterns, the development of an automatic,
data driven methodology for feature evaluation, construction and
transformation is desirable that does not require input from
human experts.

In feature evaluation a variety of methodologies exist, which
may be categorised as either wrappers or filters [20]. Filters make
use of designated methods for feature evaluation, analysing the
properties of the data in order to limit the search space of possible
meta-parameters, e.g. in the form of autocorrelation analysis,
spectral analysis or stepwise regression originating from linear
statistics. While filters are thus independent of a particular
predictive algorithm, wrappers use the underlying algorithm to
compute forecasts for feature subsets, often employing a grid-
search or an exhaustive evaluation of meta-parameters, and
assess the resulting forecasting accuracy to identify suitable
meta-parameters. As both methodologies exhibit unique proper-
ties and different shortcomings, we explore further these in order
to overcome their limitations.

Wrappers are often recognized as a superior alternative for
feature evaluation in supervised learning problems, as they take
the properties and biases of the inductive algorithm into
consideration when forecasting the dataset in question, and have
proven more popular in the computational intelligence and
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machine learning domain (see e.g. [30,31]). However, the
application of wrappers is limited by the available computational
power. While they provide an effective solution for many meta-
parameters of MLP architectures, the degrees of freedom in
feature evaluation from time series data depend on time series
length and frequency. As an autoregressive seasonality may
impact only a single lag (e.g. yt�12 and yt�24 but not yt�11), the
use of a fixed or flexible grid size provides no reliable solution, but
requires an exhaustive enumeration. However, the search space to
identify a single annual seasonality in a monthly time series
requires the analysis of two or better three (to identify possible
MA(q)-processes) full seasons and hence 224

�1 or 236
�1 input

vector candidates of lagged variables. For weekly or daily time
series of higher frequency the search space is increased to 2156

�1
or 21095

�1 combinations, respectively, with further increases on
intraday data. As this regularly exceeds the available computa-
tional power, wrappers are not employed for feature evaluation
on high-frequency data and provide no universal methodology for
time series with unknown frequencies and components. (How-
ever, wrappers with different grid sizes are routinely employed to
identify other architectural components with less degrees of
freedom, e.g. an adequate number of hidden units [1].)

In comparison, filters that identify only the relevant time series
structure have proven more efficient in feature evaluation, and
are regularly employed in statistics and econometrics. Based upon
the popular Box–Jenkins methodology of linear statistics [32], the
time series structure including seasonality is frequently identified
as a mixture of AR- and MA-components, effectively filtering non-
significant features. The specification of a parsimonious input
vector requires a stepwise analysis of the patterns in the plotted
autocorrelation function (ACF) and partial autocorrelation func-
tion (PACF) to identify statistically significant components of the
dependent variable. Although the visual ACF/PACF analysis is
itself not automated, it is feasible to formalise heuristic rules that
allow an automatic algorithmic implementation (see e.g. the
benchmark software Autobox [33] or ForecastPro [34]). Per se, the
assumption of linearity (as of most filters based on linear theory)
allows no identification of nonlinear interdependencies [35],
which introduces a fundamental mismatch that may substantially
bias the application of a nonlinear MLP towards linear compo-
nents. In the absence of feasible alternatives, linear filters are
none the less employed in identifying significant lags for NN
forecasting, e.g. following Lachtermacher and Fuller [36], without
careful consideration of known limitations. Early studies limited
their analysis to PACF-analysis in order to identify AR-lags for
MLPs [37], omitting the identification of linear MA-components.
On data with multiple seasonality, the interpretation of ACF and
PACF often provides ambiguous and misleading information on
the individual components (e.g. on weekly data, a seasonality
s1¼13 of week in the quarter will interact with the magnitude of
an annual weekly seasonality of s2¼52 as it represents a multiple
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Fig. 2. Effect of sample size on confidence intervals (a) and PACF pl
of the quarterly cycle, causing it to inflate or diminish depending
on the sign of the shorter autocorrelation cycle). Furthermore, ACF
and PACF-analysis fails to identify parsimonious lag structures for
large datasets such as high frequency time series, as demon-
strated in Fig. 2. As the confidence intervals are related to the
sample size [38], an increase in time series length results in
tighter confidence bounds (see Fig. 2a). With a growing sample
size the individual autocorrelations of a constant magnitude
become statistically significant, eventually causing the confidence
intervals to become so tight that nearly every unrelated lag
becomes significant (an effect shared by statistical significance
tests employed in all variants of stepwise regression [39]),
increasing the length of the input vector dramatically (see
Fig. 2b). As a result, the methodologies based upon statistical
test would construct non-parsimonious models that depend not
on the structure of the data generating process, but merely the
sample size. Consequently, ACF/PACF analysis yields no solution
for nonlinear components or high-frequency data.

Another popular linear filter suggested in literature for feature
evaluation of MLPs uses statistical tests in the form of stepwise
regression (SR) [40–42]. The approach employs conventional
regression to identify the significant AR-lags of the dependent
variable and uses them as inputs for the MLP, with straightforward
extensions of this approach to multivariate modelling [41], albeit
only of stationary time series. However, the identified lags are
typically serially correlated and lead to problems of multi-
collinearity, an effect even more pronounced on time series with
higher frequency where the serial autocorrelation has longer
memory. Also, it shares the challenge of increasing significance of
its stepwise tests on large sample sizes and high frequency data
with ACF and PACF analysis. The result is that the stepwise
identified models are not guaranteed to include the true significant
lags, which may potentially lead to selection of ill defined inputs.

An alternative filter approach to feature evaluation, spectral
analysis (SA) is concerned with the exploration of the cyclical
patterns in the data. It decomposes complex time series into a few
underlying sine and cosine functions of particular wavelengths,
thus providing information on the structure of single or multiple
seasonalities [43]. Time series frequencies of high power are
identified as an indication of a strong periodicity, which are then
recoded as lags to allow a direct construction of input vectors for
MLPs to extrapolate the periodicities. SA is mathematically
equivalent to autocorrelation analysis [44], yet without informa-
tion on the potential MA structure. Consequently, SA can be
employed in analogy to the Box–Jenkins methodology to identify
periodicities and AR-lags from time series, but shares its short-
comings in the assumption of linearity and the sensitivity to the
sample size of the datasets. In contrast to the statistical tests of
Box–Jenkins, SA requires the setting of a threshold depending on
the dataset properties in order to facilitate the identification of
the seasonalities. Setting this threshold automatically, so that the
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algorithm is capable of dealing with datasets of arbitrary
periodicity that contain both low and high frequency time series
patterns, presents a further challenge.

Beyond feature evaluation, an aspect equally neglected by
existing filter and wrapper approaches to date is the possibility of
feature construction. Methodologies rarely distinguish between
stochastic and deterministic seasonalities in model specification,
which may require different treatment. To capture deterministic
trend or seasonal components it is advisable to create additional
features in the form of integer or dummy variables [45], rather
than merely select lagged inputs. The conventional approach to
model deterministic seasonal patterns is to use S�1 binary
dummy variables for each time period t, where S is the seasonal
length. However, for high frequency data this creates very long
input vectors through the use of S�1 additional time series.
Alternatively, one may consider a set of sine and cosine dummy
variables, which have been shown to capture deterministic
seasonal elements of the time series well [46]. However, the
ex ante identification of stochastic or deterministic seasonality is
not supported by ACF/PACF, SR nor SA, requiring subsequent
manual modelling choices and limiting the automatic use of these
filters for feature creation.

Furthermore, no consensus exists on approaches for automatic
feature transformation. While most statistical filters require
stationary time series to identify seasonal features, i.e. removal
of trend and level shifts, dissimilar prerequisites exist for NN
which are in theory capable of approximating any time series
structure [5,47]. Linear statistical tests exist in order to identify
non-stationary time series, such as the augmented Dickey–Fuller
(ADF) test, similarly limited by their assumption of linearity.
Furthermore, no consent exists whether a time series with
identified (stochastic) seasonality should be deseasonalised first
to enhance the accuracy of NN predictions [4,5,48] or seasonality
be incorporated as AR- and MA-components in the NN structure
[49–52]. This problem becomes especially pronounced for
datasets with time series of unknown frequencies and potentially
overlying seasonality, such as the datasets provided for the
ESTSP’08 competition.

As a result of the shortcomings of existing filter and wrapper
approaches, there currently exists no consensus on how to
identify linear and nonlinear time series features across different
time series frequencies, nor their treatment through feature
creation nor feature transformation [8,53]. Consequently we
propose a methodology for feature selection that reflects prior
shortcomings and provides a non-parametric methodology for the
identification of a single and/or multiple repetitive, stochastic or
deterministic seasonal components of unknown length, magni-
tude and type in order to facilitate fully automatic MLP modelling.
To combine the advantages of filters and wrappers, we will
develop a novel filter for feature evaluation, combined with
successive wrapper approaches for feature construction and
transformation.
3. Automatic feature evaluation for time series data

3.1. Seasonal identification using an iterative neural filter

In order to identify time series features and to capture them in
the input vector of a NN, we propose a non-parametric, iterative
filter based on the combination of Euclidean distance estimation
and MLPs. The methodology is motivated from the iterative Box–
Jenkins methodology [44], and the use of simple seasonal (year-
on-year) plots which forecasting practitioners frequently employ
to visually identify single and multiple seasonality in times series.
Although the visual analysis frequently fails to reveal complex
seasonal interactions of autoregressive and moving average
components, multiple overlying and interacting seasonality of
different cycle lengths and nonlinear patterns, the identification
can be aided by a stepwise process of model refinement and re-
identification from the residuals, allowing the effective use of
simple visualisations.

Finding the seasonal structure of a time series is equivalent to
identifying the correct seasonality s of the input vector of a MLP
that allows it to capture the seasonal information as lagged
variables. Any given time series Y of length N can be split in n¼N/s
vectors of varying seasonal length s, where s¼[1, 2,y, N/2].
For s¼1 the maximum number of N vectors is created, each
containing a single observation yt; for s¼N/2 only two vectors are
constructed, each containing N/2 observations, [yt, yt�1,y, yt�N/

2 +1] and [yt�N/2, yt�N/2�1,y, yt�N +1]. For each value of saS the
vectors will exhibit some non-correlated pattern as a fraction or
multitude of the seasonality S. When s matches the actual
underlying seasonal length S, all vectors will exhibit a similar
seasonal pattern with deviations only due to noise, decomposing
the total variance into that caused by seasonality and by noise.
Hence the input vector of length s that minimises the distance
between all N/s vectors identifies a potential seasonality.
We measure the distance between these vectors using the
Euclidean distance. For the two-dimensional case, for two vectors
P¼[p1, p2,y, ps] and Q¼[q1, q2,y, qs] the Euclidian distance is
defined as

dðP,Q Þs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXs

i ¼ 1

ðpi�qiÞ
2

vuut : ð2Þ

Distances are calculated as the sum of all n pair-wise distances
of equal length s. For nZ2 all combinations are considered as
pair-wise distances; consider three vectors P¼[p1, p2,y, ps],
Q¼[q1, q2,y, qs] and R¼[r1, r2,y, rs]; for s¼1 the distance of
three pairs is measured by (p1,q1), (p1, r1) and (q1, r1). For n vectors
of length s there are n (n–1)/2 pair-wise combinations. In order to
compare distances across different s the Euclidian distance is
subsequently divided by the number of pair-wise distances to
estimate an average distance for a given s independent of the
number of vectors n or their length s in the original time series.
The input vector length s that minimises the distance indicates a
potential seasonal length; note that for s¼1 the time series would
exhibit no regular seasonality. As an example, let us consider a
synthetic time series for t¼[1, 2,y, 100] constructed as a sine
wave with a periodicity of s¼12, with Y(t)¼sin((2pt)/12) and no
noise. Following the method described above we split the time
series for different s, e.g. 5, 12, 19 and 24 as shown in Fig. 3.

All seasonalities sa12 result in a distance dp>0, interpreting
seasonality as noise; for s¼12 a zero distance dp is measured,
identifying the periodicity of the time series. However, for times
series without noise the seasonal distance s would exhibit an
identical mean distance for all multiples of s, d(P,Q)s¼d(P,Q)ns. In
order to accurately distinguish the shortest underlying season-
ality from its multiples, and to achieve a parsimonious input
vector, we penalise the mean distance of longer vectors s using a
penalty factor t proportional to the log of s:

dpðP,Q Þs ¼ logðdðp,Q Þsþ1Þ�t logðsÞ, ð3Þ

The penalty t controls the sensitivity of the method and is
empirically determined to penalise a growing seasonal length as
less vectors become available to estimate the distances (we
employ t¼0.15 in all experiments). The minimum of penalised
distances dp(P,Q)s identifies the shortest seasonality of the time
series.

In order to identify and account for multiple overlying
seasonalities, that may co-exist independently or interact with
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other seasonal frequencies, the identified seasonality s needs to be
iteratively filtered from the time series in order to identify less
dominant patterns. We propose an iterative neural filter (INF),
capable of removing any type of nonlinear seasonality in the
presence of other seasonalities, trends and irregularities in the
time series. (Note that the term filter is not used the sense of
feature selection methodologies, i.e. wrappers vs. filters, but in the
sense of filtering out noise – or components – from a time series
signal.) In order not to bias the predictive modelling of the
algorithm, the filter should exhibit similar functional capabilities
to the algorithm of the NN employed for forecasting. We will use a
MLP to estimate the INF, utilising the capability of universal
approximation [2,54] but employing a distinct topology dissimilar
to those used for forecasting. The inputs of the MLP do not consist
of lagged realisations of the dependent variable yt, but of
contemporaneous explanatory variables that encode determinis-
tic time series patterns. Two inputs xs,1 and xs,2 encode seasonality
using an explanatory variable that is created uses Sin(t) and Cos(t)
for an explicit representation of the point in time within an
identified seasonality of length s (see e.g. [45,46]) with

xs,1ðtÞ ¼ sin
2pt

S

� �
, and xs,2ðtÞ ¼ cos

2pt

S

� �
: ð4Þ

In contrast to the s�1 binary dummies conventionally used in
regression to encode deterministic seasonality, the explanatory
variables xs,1 and xs,2 code a deterministic seasonality as sine–
cosine pairs for each s, as this substantially decreases the size of
the input vector for long and multiple seasonalities. In addition
two explanatory variables z1 and z2 are created that provide an
explicit representation of the point in time t within the time series
(which is lost in creating disjoint input vectors for feedforward
NNs) by encoding the linear distance from the beginning and end
of the time series N, with t¼[1, 2,y, N], and

z1ðtÞ ¼ t and z2ðtÞ ¼N�tþ1: ð5Þ

These variables facilitate a representation of structural changes
of the level of the time series, i.e. different forms of trend or level
shifts, which may interact with the periodic seasonal signals. Both
variable pairs xs,i and zj aid the MLP in identifying (interacting)
trend and seasonality simultaneously, in contrast to prior
transformation and subsequent modeling, effectively enabling
the MLP to capture and model non-stationary time series.

The MLP architecture itself is kept consistent (also in all
subsequent experiments) for reasons of simplicity and to facilitate
replication. Preliminary experiments across trials of single and
multiple seasonality, different magnitudes and different noise
levels indicated the need for a comparatively large number of
hidden nodes to capture complex periodic signals, regardless of
the number of input nodes. We chose a constant topology of 16
hidden nodes arranged in a single hidden layer with hyperbolic
tangent activation functions, and a single linear output node yt for
output. As the objective of this MLP is not to forecast or generalize
on unseen data, but only to approximate in order to filter out
structure, no test set is used during training, withholding merely S

observations for validation purposes and using all remaining N–S

observations of the time series for training. All contemporaneous
inputs are linearly scaled between [�1, 1]. The weights of the
MLP are randomly initialized once for each iteration of estimating
the INF. The network is subsequently trained using a standard
backpropagation algorithm: input patterns of the deterministic
variables xs,1, xs,2, z1, and z2 for a point in time t are shown to the
network, which learns the mapping of these inputs to the target
output of the actual time series observation yt by minimizing a
squared error loss function. The result is a heteroassociative
nonlinear filter that approximates only the deterministic time
series patterns of level, trend and seasonality of pre-specified
length which are provided as inputs, but no other patterns. Note
that different architectures and training algorithm were tried but
yielded similar results; however, data and domain-specific
architectures may yield even more robust results and more
parsimonious models. Also, the MLP maybe initialised several
times to provide more robust filter results given the stochastic
nature of MLP training.

The network output ot, which expresses the regular structure
of the time series as captured by the MLP, is subsequently
subtracted from the original time series yt, effectively creating a
filtered time series from which the dominant pattern of the
periodic signal has been removed. Following this, the process is
repeated in order to stepwise identify and eliminate further
remaining periodicities. In successive iterations, seasonal compo-
nents of different length s to the one identified before are added as
additional pairs of sine–cosine inputs xs,1 and xs,2 to allow a
simultaneous filtering of multiple seasonalities. The process is
repeated until the most prominent period identified is s¼1, which
implies that no further seasonality is present in the time series, as
illustrated in Fig. 4.

The seasonal identification follows the established tradition of
iterative modelling in the ARIMA context, and is equivalent to a
stepwise decomposition of variance into structural components of
seasonality starting with the most dominant pattern. The iterative
nature of the proposed algorithm offers the advantage that should
a seasonality s not be fully filtered by the MLP, it may be identified
again in the following iteration until it is fully removed. Using
pair-wise comparisons enables the identification not only of
deterministic seasonality, but also stochastic seasonality and
seasonality with structural breaks, as the pair-wise comparisons
also identify similarity within disjoint parts of the time series
where a homogeneous similarity across the whole series cannot
be found. The INF also offers an advantage regarding its
interpretability, as the filter is based upon the simple distances
of vectors within a seasonal diagram, a heuristic established with
practitioners that may be visualised to allow an analysis of the
identified seasonal structure. In addition, the periodicity of the
identified seasonalities allows inference of the frequency in which
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Fig. 4. Flow chart of the iterative filter.
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the time series had been measured. Consequently, the identified
seasonalities allow a general, non-parametric insight into the
structure of the seasonal components of the time series, which
may also be used for other algorithms of computational
intelligence and linear statistics.
3.2. Experimental illustration of the iterative neural filter

Conventionally, the INF algorithm processes the information
fully automatically without graphical output or user intervention,
which may impair the understanding of its process. To illustrate its
iterative functionality, we visualise the intermediate output after
each step of the INF for two synthetic time series, plotted in Fig. 5.

The time series are constructed using a constant level and no
trend, with different components of single and multiple overlying
seasonality (see Appendix A for the equation and parameters).
Time series A contains 200 observations with a single seasonality
S1¼12 (representative of monthly data), time series B contains
1500 observations with double seasonality S1¼7 and S2¼365
(representative of daily data). We provide the intermediate
graphical output after each step of the INF in (a) estimating the
Euclidian Distance for each s¼(1, 2,y, N/S) to identify the
minimum penalised distance dps (indicated in the graph by a
cross), which is used to specify the seasonality s for the input
variables xs,1, xs,2, z1 and z2 of the MLP, (b) the output of the MLP
using only the identified input variables for s to match the output
of the actual time series, and (c) the corresponding residuals of
the MLP output. The plots for time series A are shown in Fig. 6; the
plots with additional iterations for double seasonality of series B
are shown in Fig. 7.

The analysis of seasonal distances on the original time series A
(Fig. 6.1a) identifies a minimum mean Euclidian distance for
s¼12. Consequently the MLP is fitted with four inputs to include
two deterministic seasonal variables xs,i that encode a sine and
cosine of length S¼12 and the two time indicators zj, each in a
single input node; after parameterisation, the network output
depicted in (Fig. 6.1b) shows clear seasonality of the same
amplitude and frequency as the original time series in Fig. 5a,
resulting in stationary and uncorrelated residuals after deducting
the network output from the time series observations (Fig. 6.1c).
The residuals contain no additional seasonal information, which is
verified by running the seasonal identification of the INF again to
determine the minimum Euclidian distance for s¼1 in the 2nd

iteration (Fig. 6.2a). The methodology therefore identifies only the
correct seasonality from the time series, stopping after a single
iteration.

For time series B the plot of the penalised seasonal distances
(Fig. 7.1a) identifies a first minimum of dps¼364, which is
subsequently used to fit a first set of sine and cosine variables
xs,i with S¼364 plus two time indicators zj, to the MLP. The
network output of the seasonal pattern is shown in Fig. 7.1b and
the residuals after subtracting the MLP output from the original
series in Fig. 7.1c. (Note that only the first 50 observations are
plotted to limit visual clutter and allow identification of the
remaining systematic pattern in the residuals.) A repetitive,
seasonal pattern of shorter time series frequency is apparent in
the residuals (Fig. 7.2a), initiating a second iteration of the process
on the residuals. The penalised Euclidean distance identifies a
second seasonal frequency of 7; thus the NN inputs are updated to
include a second pair of sine–cosines with periodicity S¼7.
Following network retraining on the original time series we
compute network output, residuals and identify an optimal
distance of dps¼1, which signifies the absence of further
seasonality in the time series, aborting the iterative search
algorithm. The MLP successfully captures both overlying season-
alities of s1¼364 and s2¼7 using 6 deterministic inputs,
identifying the dominant seasonality (that explains most of the
variation in the Euclidian distance) first, followed by the less
dominant one. The so identified time series components of
seasonality of time series A and B, explicitly captured by the
explanatory time series x12,1, x12,2, z1, z2 and x7,1, x7,2, x364,1, x364,2,
z1, z2, respectively, are later fed to the MLP for the actual
prediction.
3.3. Accuracy and robustness of the iterative neural filter

To demonstrate the accuracy of the proposed filter under
different data conditions, and to compare its accuracy with that of
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Fig. 6. Iterative outputs of (a) seasonal distances, (b) MLP filter and (c) MLP residuals for time series A.
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established benchmark filter techniques for feature selection, we
conduct a simulation experiment on an extended set of synthetic
time series. The time series are designed as a balanced sample
with different data conditions: all series have an identical
constant level, using different components of single and multiple
overlying seasonality, seasonality of different magnitude and
different noise levels, thereby extending the data used in the
illustration above. Two of the synthetic time series A.1 (denoted
as A in Section 3.2) and A.2 are constructed to mimic the
properties of monthly data, both using 200 observations with a
single seasonality S1¼12 with different noise levels. In addition,
two synthetic time series B.1 (denoted as B in Section 3.2) and B.2
are constructed representative of daily data, both using 1500
observations with double seasonality S1¼7 and S2¼365, but with
different noise levels. Furthermore, one synthetic time series C.1
is created with 200 observations without seasonality in order to
evaluate the algorithms’ sensitivity to the absence of patterns. All
equations and parameters used to construct the time series are
provided in Appendix A for replication.

To evaluate the efficiency and robustness of the proposed INF
algorithm for automatic feature evaluation we compare its
precision in identifying only the correct seasonality with that of
three established statistical filtering methods (discussed in
Section 2.2): spectral analysis (SA) using periodograms derived
from fast Fourier transforms, the analysis of autocorrelation
functions (ACF) and of partial autocorrelation functions (PACF).
Table 1 summarises the seasonalities identified by the proposed
INF, SA, ACF and PACF analysis. Due to space constraints, for SA
only the largest periodicities identified from the periodograms,
and for ACF/PACF only the strongest correlations are presented in
the table; in addition the table lists the total number of significant
variables identified by the algorithm to show the resulting length
of the input vector.

The results of SA, ACF and PACF in Table 1 confirm the
theoretical shortcomings of these algorithms discussed in Section
2.3. Due to sample size restrictions, the SA does not approximate
the correct frequencies, in many cases omitting the periodicity
and introducing several artefacts. While the true seasonality of
s¼12 for A.1 and A.2 is identified, all periodograms identify
additional, spurious seasonalities, and even identify periodicities
in C.1 that are purely due to randomness (created using a
particular distribution). On series with double seasonality, SA
identifies the high frequency of 7 correctly, but also a false low
frequency seasonality of 375 plus additional, non-existent ones.
Outputs such as these require the interpretation of a human
expert, limiting the ability to automate the process of feature
selection. These shortcomings will result in misspecified, non-
parsimonious MLP input vectors, introducing randomness from
non-existing periodicities to the model that may impair learning.
Similarly, ACF and PACF equally fail to identify the true underlying
seasonality even on low frequency series where values of s/2 and
around s are identified, a common problem for sinusoidal seasonal
patterns. For longer time series of high frequency data, almost all
lags become statistically significant (at a 5% significance level) as a
result of the tight confidence bounds (caused by the large sample
sizes). This creates long, non-parsimonious input vectors of over
600 input nodes, and voids any interpretation of the results.

In contrast to the benchmark methods, the INF identifies all
seasonal patterns accurately from the time series, without expert
guidance or user intervention, and models them parsimoniously
using only few input nodes. Therefore the INF is capable of an
automatic identification of only the correct frequencies of the
seasonalities present in the time series, without any ‘false
positives’ of identifying irrelevant periodicities (see Table 1). For
series A.1 and A.2 the single seasonality of s¼12 is accurately
identified in a single iteration of the process, while for time series
B.1 and B.2 with multiple seasonality the dominant seasonality
explaining the most variation in the Euclidian distance is
identified first, followed by the less dominant one. Note that for
time series B.1 and B.2 a seasonality of 364 was identified, instead
of the ‘true’ seasonality of 365. This is due to the effect of aliasing
– the interaction of low and the high frequency periodicities in the
time series (i.e. caused by 52 multiples of a seasonality of 7, the
higher frequency). While it is feasible to correct for this effect,
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(c) Residuals of INF output

Fig. 7. Iterative outputs of (a) seasonal distances, (b) MLP filter and (c) MLP residuals for time series B.

Table 1
Identified seasonalities from synthetic time series by algorithm (in order of significance).

Series True si INF SA ACF PACF

# Vars Final lags # Vars Top 5 lags # Vars Top 5 lags # Vars Top 5 lags

A.1 12 4 12 8 11.8, 4.4, 2.4, 4.1, 4 18 1, 7, 24, 6, 12 6 1, 7, 4, 5, 23

A.2 12 4 12 9 11.8, 22.2, 200.0, 14.3, 10.5 20 6, 18, 12, 1, 13 6 1, 6, 13, 5, 3

B.1 7, 365 6 364, 7 38 375.0, 7.0, 214.3, 2.4, 2.2 673 7, 14, 21, 8, 1 36 1, 8, 5, 2, 30

B.2 7, 365 6 364, 7 41 7.0, 375.0, 7.1, 250.0, 2.3 661 14, 7, 21, 28, 35 37 1, 4, 5, 8, 6

C.1 – 0 – 6 2.0, 2.6, 11.8, 3.8, 2.7 2 8, 17 0 –
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prior experimentation verified that applying the misidentified
frequency of 364 provides a better fit and lower out-of-sample
forecast errors than the true seasonality of 365, regardless of the
forecasting algorithm (a comprehensive analysis of aliasing is
beyond the scope of this paper). For time series C.1 without
seasonality no periodicity is identified. We therefore conclude
that the algorithm overcomes the limitations of common
statistical approaches for feature evaluation by parsimoniously
capturing only relevant seasonality through deterministic ex-
planatory variables. The time series features of trend and
seasonality identified by the INF that are capable of extracting
all seasonal information from the time series are explicitly
captured by the explanatory time series xs,I and zj, respectively.
The same input vector is subsequently used in training of the
MLPs for prediction, providing a coherent methodology of
capturing and extrapolating arbitrary periodicities in a fully
automatic way.
4. Automatic feature construction and transformation for
time series data

Although the INF accurately evaluates and identifies all
relevant features form the time series, it cannot overcome the
challenge of distinguishing between stochastic or deterministic
seasonality, which is required for an adequate feature construc-
tion of dummy variables. Similarly, the INF provides no insight
into the most suitable pre-processing of the time series through
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feature transformation, such as single differencing for non-
stationary time series or seasonal differencing for seasonal ones.
In order to enable the MLP to also capture non-seasonal AR- and
MA-processes, and stochastic or mixed form seasonality, we need
to consider additional input vector candidates to account for
additional autoregressive lags in feature evaluation, feature
construction of explanatory variables for deterministic patterns
and feature transformation through seasonal and trend differen-
cing for stochastic patterns. Only a limited amount of options
exist for feature construction and transformation. Therefore we
propose a simple wrapper around the proposed INF to create
additional input vector candidates, combining the effectiveness of
wrappers in low dimensional problems of feature construction
and transformation with the efficiency of filters for high
dimensional problems of feature evaluation.

Each time series is first explored using the proposed INF
algorithm (see Section 3) to identify any cyclical and seasonal data
frequencies. The identified time series components provide the
first set of input vector candidates by including the specified sine
and cosine-explanatory variables xs,I and zj for each of the
identified seasonalities s1, s2,y, sn into the input vector, encoding
deterministic seasonality and trend [55]. In order to capture any
stochastic seasonality, the input vector can be further extended to
integrate time lagged realisations of the dependent variable in the
form of nonlinear AR(P)s terms, as suggested in previous studies
[56]. Beyond the time series components of trend and season, the
time series may also exhibit additional auto- and/or cross-
correlated structures of non-seasonal length, nasi, which must
equally be captured in the input vector. We therefore employ the
conventional linear parametric approach of stepwise regression
(at a 5% significance level) to include the most significant seasonal
and/or non-seasonal lags, creating additional input vector candi-
date models. The stepwise regression is primed with the inputs
identified by the INF to account for deterministic seasonality and
instationarity.

No consensus exists on whether a time series with identified
trend should be detrended, and whether a seasonal time series
should be deseasonalised first to facilitate NN learning [4,5,48].
Moreover, valid identification of significant autoregressive lags
through a stepwise regression requires stationarity of the data,
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which is explicitly violated in trended or seasonal time series
patterns. Yet, a prior removal of trend and/or seasonality may
impact on the lags identified as significant, effectively altering the
input vector. In the absence of best practices, we consider the
original, detrended and (for each of the n identified seasonalities
sn) deseasonalised time series as candidates for a further wrapper
of feature transformation. To detect integrated time series we
employ the well established Augmented Dickey–Fuller (ADF) test
for non-stationarity (i.e. trend or structural breaks through level
shifts). For non-stationary time series we create candidates of (a)
the original time series I(0) and (b) the detrended time series
using (first or second order) differencing I(d). For seasonal time
series we consider candidates of (a) the original time series I(0)
and (c) deseasonalised time series using seasonal differences
I(d)si, and for trend-seasonal time series all combinations (a), (b),
(c) plus (d) candidates of detrended and deseasonalised time
series I(0) I(d)si. Note that the first or seasonal differenced time
series are used only for the stationary identification of the input
vector through stepwise regression – the NNs are trained only on
the original, undifferenced time series containing all patterns.

The input vector candidates identified through feature selec-
tion serve as a starting point for additional model specification of
the remaining MLP network architecture. Following the identifi-
cation of all possible feature candidates, a set of MLP architectures
is conventionally specified via wrappers to evaluate hidden nodes,
layers, and activations functions for each input vector, and trained
to predict the unseen data. From all combined candidate models
the best ones are selected to form an ensemble for the final
prediction, as will be described in the consecutive sections.
5. Empirical evaluation on the ESTSP’08 competition

5.1. Exploratory data analysis and feature selection

To verify the performance of the proposed iterative neural
filter we submitted predictions to the forecasting competition of
the 2008 European Symposium on Time Series Prediction
(ESTSP’08). The ESTSP’08 competition provided three time series
of different length and structure (displayed in Fig. 8), without any
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domain information on the origin, structure, components or
frequency of the time series. The objective was to predict all three
time series as accurately as possible for multiple steps ahead into
the future, measured on true ex ante forecasts from withheld data
using the average MSE.

The first time series of the competition, plotted in Fig. 8a, is
comprised of 354 observations, and was provided with two
additional explanatory time series of equal length as potential
inputs; as no future inputs for the explanatory series were
provided these would require separate predictions to serve as
contemporaneous predictors. No domain knowledge on the time
series itself was provided. The objective is to forecast the next 18
values. Applying the INF using the penalised Euclidean distance, a
single seasonality of 12 observations was identified, indicating a
monthly time series of 29.5 years of data with a month in the year
seasonality. The ADF test indicates the absence of trend,
suggesting two options to model the input vector regarding pre-
processing of the time series: identifying significant lags using
stepwise regression on the original time series (1.a) and
identifying lags after taking a 12th order seasonal difference to
remove possible stochastic seasonality (1.b).

The second time series of the competition (Fig. 8b) contains
1300 observations without explanatory time series. The objective
is to forecast the next 100 values. The ADF test identifies an
instationary time series caused by a structural break in the form of
a single level shift, visible in Fig. 8b (for an automatic identification
of level shifts, see [57]). As a consequence no first order
differencing of the data to compensate for trend-instationarity is
required; we introduce a binary dummy variable to code the
identified level shift. Using the INF we identify seasonalities of 7
and 364 observations, indicating a time series of daily observa-
tions with day in the week seasonality and day in the year
seasonality. The significant lags are identified on the original time
series (2.a), applying a 7th order differencing (2.b), a 364th order
differencing (2.c) and both differences (2.d) in order to identify
possible additional significant lags as input vectors candidates.

The third time series of the competition (Fig. 8c) contains 31,614
observations; the objective is to predict the 200 next values. The ADF
test identifies no unit root, i.e. no indication of a trend. The INF
identifies three overlaying seasonalities of 24, 168 and 8760
observations, indicating an hourly time series with hour of the
day, day of the week, and day in the year seasonalities. This provides
several alternatives to input vectors specification by applying
different levels of seasonal differencing, including the original series
(3.a), the 24th (3.b), the 168th (3.c), and the 8760th differenced
series (3.d), plus four combinations of the seasonal differences.
5.2. Architecture specification and training

The input vector candidates of feature selection are embedded
in a further wrapper to specify different candidate MLP archi-
tectures for each of the identified feature candidates, resulting in a
combined filter-wrapper approach. Due to the possible interac-
tion of the time series structure, the input vector and its encoding
with the number of hidden nodes, we evaluate different MLP
architectures for every input vector candidate. Following the
input vector specification, we construct a set of MLPs using a
stepwise wrapper that evaluates a range of hidden nodes nHI¼[2,
4, 6, 8, 10, 12, 14] for a single hidden layer, and the Hyperbolic
Tangent (TanH) and the Logistic (Log) activation functions
fact¼[TanH, Log] for each input vector candidate for consideration
in model selection. All other parameters remain unaltered,
applying a single output node with the identity function for an
iterative multiple step-ahead trace forecast, and a conventional
feedforward topology of a MLP.
Each MLP is trained using backpropagation with momentum
for 1000 epochs or until an early stopping criterion is satisfied.
(Alternative learning algorithms including Levenberg–Marquard
were also evaluated, without any significant differences in
accuracy.) For the early stopping criterion the MSE is evaluated
every epoch, and training is halted if the MSE does not improve by
1% in 100 epochs. The initial learning rate is set to Z¼0.5,
applying a cooling factor DZ¼0.01 to reduce the learning rate in
each epoch; the momentum term is kept constant at j¼0.4. All
data is pre-processed using linear scaling into the interval of
[�0.6, 0.6] to allow for headroom on non-stationary time series,
and presented to the MLP using random sampling without
replacement. In order to avoid local minima during the training
and to provide an adequate error distribution using sufficient
results, each MLP candidate is initialised 40 times with random
starting weights in the interval of [�0.6, 0.6]. To facilitate training
and a simulated out-of-sample evaluation prior to the submission
to the competition, and without knowledge of the true test-data,
each of the time series was split in three sequential data subsets
for single fold cross-validation, using 60% for training, 20% for
validation and 20% for testing, respectively.
5.3. Model selection

Given the large number of alternative input vector candidates
and architecture candidates created for each time series, the
selection of a single MLP, which promises accurate and robust
out-of-sample performance on unseen data is highly challenging.
The limited evidence of NN in time series prediction, and, in
particular, their low consistency and robustness of performance
across homogeneous datasets [6] can in part be contributed to
suboptimal model selection using a single-fold cross-validation,
as has been discussed in detail in forecasting literature [58,59].
Best-practice approaches, such as k-fold or leave-one-out-(LOO)-
subsampling regularly employed in machine learning, face
particular challenges in forecasting due to the serial dependency
of observations in a time series. To obtain more accurate results
given the single fold evaluation, within each data subset of length
n we employ a rolling forecast origin evaluation, e.g. estimating
the average performance metrics of each model candidate across
m trace forecasts, instead of a single fixed origin as is common
practice. This scheme overcomes the shortcomings of fixed origin
evaluation, like its dependence of the randomness contained in
the particular forecasting origin and the limited sample size of
errors [60]. In rolling origin evaluation, the number of time origins
depends on the maximum length of the input vector l, and the
data subset length n, with m¼n� l. For a forecast horizon h we
produce h(h+1)/2 different forecasts, instead of only h under the
fixed origin evaluation. Therefore, we obtain more forecast errors
that allow a more accurate estimation of the forecasting error
distributions and hence model selection.

To further limit the impact of overfitting to a data subset or
origin in model selection, we consider an ensemble of diverse
candidates to generate average predictions. In addition to
substantial evidence that ensembles of simple methods perform
well in classification tasks, similar findings have been confirmed
for time series prediction, e.g. at the M3 competition, where a
simple average of all competing methods performed better than
each of the competing methods itself [3]. Consequently we rank
all parameterised MLP candidates for each time series, select the
10 models of the highest rank and average their forecasts Ŷt +h for
each future horizon h. The ESTSP’08 competition assesses the
accuracy of the models using a normalised MSE for each time
series averaged over all three series. In order to align the
performance metric used in model development with the metric
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used for the final evaluation of the competition, we parameterise
and select models using the MSE despite its well explored and
documented shortcomings in empirical evaluations (e.g. the
sensitivity to outliers, etc.; see [61,62] for a discussion).

The combined filter-wrapper approach of feature selection and
architecture specification resulted in a large number of MLP
candidate models, of which different candidates may be combined
in the ensemble for the final prediction. Due to the large number
of candidates a comprehensive overview of the individual
candidate models and architectures actually employed in the
ensembles is infeasible given the space constraints of this paper.
However, we will briefly discuss some general findings in order to
indicate potential learnings from our methodology: 80% of the top
10 candidate models (which were used to create the composite
ensemble forecasts) for each of the time series use the sine/cosine
variables identified by the INF to code seasonality of different
lengths, implying that this methodology aids the model in
capturing the complex overlying seasonal forms. For those
candidates for which an input vector was identified using both
the original and the differenced time series, both alternatives
were always selected to be within the top 10 across all time series,
implying that these approaches are complementary. An unex-
pected finding was that the univariate models for time series 1,
excluding the two provided time series of explanatory variables,
outperformed all multivariate models that used this information.
This reduced the complexity of creating the final forecasts, as no
predictions for the explanatory time series were required and no
accumulation of the errors could arise from their inaccurate
forecasts to impact the final forecasts. Consequently, all variables
contained in the input vector were univariate lags or related to
explanatory encodings of the time series’ components.

Regarding network topology, no coherent structure of the
number of hidden nodes could be identified for a particular time
series. For time series 1 and 2 most candidates ranked highly
applied a TanH-activation function, while candidates for time
series 3 used the Log-activation function. With the increase in
time series frequency on the ESTSP’08 data, and the resulting
increase of observations per annual season, both the data volume
and the length of the input vector to capture a full season increase
proportionally. Consequently, high frequency time series resulted
in longer input vectors. Across all input vectors of candidate
models for monthly data, the methodology employs an average of
7 input nodes with the longest time lag identified as t-36. For
daily and hourly time series, the methodology utilises an average
of 30 and 354 input nodes, and a maximum lag in the input vector
of t-392 and t-9072, respectively. Reflecting upon the large
number of input and hidden nodes, a candidate model developed
for the hourly time series would use 2478 parameters on average,
in comparison to only 49 for the monthly time series. The
implications of this for MLP training are substantial, considering
the intricacy and time to solve such a complex optimisation
problem in the light of a limited amount of training vectors.
Furthermore, our experiments identified a positive correlation
between the frequency of the time series and the size of the
search space required to find suitable input lags (represented by
Table 2
MSE of ESTSP’08 time series 1, 2 and 3.

Model Time series 1 Time series 2

Train Valid Test Train

Random walk 13.59 6.63 9.99 6.11E +16

Single EXSM 7.31 4.05 4.78 5.89E +16

Seasonal EXSM 5.95 3.81 5.38 1.11E +17

MLP ensemble 4.33 3.32 4.76 2.50E +16
the maximum time-lag in the input vector). Not only does the
input vector for time series of higher frequency increase in size,
the maximum time lag to be considered also moves further into
the past. Most methodologies which identify the input vector
based upon wrappers, grid search, exhaustive random search,
genetic algorithms and other meta-heuristics using on computa-
tional force are bound to encounter constraints in providing valid
and reliable results in a reasonable time frame. In contrast, the
filter approach based upon the INF and iterative stepwise
regression to identify the appropriate lags increased computa-
tional times only proportional to the increase in the search space,
providing solid identification of the relevant time lags for
forecasting in an acceptable time. Still computational time varied
substantially, ranging from virtually instantaneous for the time
series 1 and 2 to several days for time series 3 using a pair of dual
core processors at 2.4 GHz with 10 GB of RAM.

5.4. Preliminary results of the ESTSP’08 submission

Prior to submission, the MLP ensemble forecast for each time
series was compared with a series of statistical benchmark
forecasting methods, in order to assess the potential gain in
accuracy in comparison to the increased complexity of MLPs. We
compared three different benchmark models for each time series:
a random walk, ŷt + h¼yt, which assumes that the future forecasts
ŷt +h for all horizons h are equal to the present value of the time
series yt. In addition, we evaluated single and seasonal exponen-
tial smoothing models (EXSM), with the seasonal length set to
match the longest seasonal cycle of each time series (as identified
in Section 3.1) as this would include multiples of all shorter
periodicities. Information on statistical benchmarks and their
parameterization can be found in [38,63]. Table 2 contains the
MSE errors of the NN ensembles and the statistical benchmarks
for time series 1, 2 and 3, respectively. The method with the
lowest MSE per data subset is indicated in bold italics.

The MLP ensemble, employing the INF for feature evaluation
and wrappers for feature construction, feature transformation and
architecture selection, outperforms the statistical benchmarks on
all three time series, and across all data subsets of training,
validation and test. The dominance of the MLP ensembles
identifies significant gains in accuracy using our proposed
methodology, and its robustness across data subsets. The same
composite ensemble forecasts were subsequently submitted to
the ESTSP competition (see Fig. 8).

Note that the true ESTSP’08 competition test set was withheld and
has not been released to date, so that we cannot provide error
measures or actuals for the true ex ante forecasts. However, in the
overall ranking of the ESTPS’08 competition our approach ranked 2nd.
6. Conclusions

This paper proposes an initial methodology for automatic
modelling of MLPs for time series with arbitrary time frequencies,
seasonalities and trends, evaluated on synthetic time series and
Time series 3

Valid Test Train Valid Test

5.78E +16 5.38E + 16 1997.54 1399.56 1530.28

5.59E +16 5.04E +16 1770.96 1230.68 1310.10

3.40E +16 4.31E + 16 1409.56 1120.93 1161.48

1.63E +16 1.01E + 16 353.65 430.33 971.07
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Table A1
Properties and parameters used to construct the synthetic time series.

Series Periodicity Sample l a1 a2 S1 S2 S

A.1 12 200 500 8.40 – 12 – 5.62

A.2 12 200 500 13.53 – 12 – 15.81

B.1 365, 7 1500 500 7.53 14.44 7 365 5.78

B.2 365, 7 1500 500 20.23 13.09 7 365 10.85

C.1 1 200 500 – – – – 1.00
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the true ex ante predictions of the ESTSP’08 competition. An
iterative neural filter is proposed for feature evaluation to
automatically identify the frequency of the time series, embedded
in wrappers for feature construction, feature transformation and
architecture selection. The principle of the methodology is to
utilise the efficiency of filters for known and well specified
properties, and to employ wrappers for additional modelling
choices with limited search spaces, effectively combining the best
practices of statistics with those of computational intelligence.
As a result we construct a large set of competing candidate
models of MLPs with different input vectors utilising varying
temporal information on trends, stochastic and deterministic
seasonality through autoregressive and/or dummy variables,
respectively. In addition, wrappers are employed to create
candidate models for a number of hidden layers, hidden nodes
and activation functions. In order to omit the need for manual
intervention we employ a composite ensemble forecast of the 10
best models selected on their sample performance for each time
series. The proposed methodology, which is based on established
tools and methods, avoids arbitrary modelling decisions and
manages to overcome the challenges of modelling heterogeneous
sets of time series with varying time frequency and time series
patterns, a task where most methodologies developed to date fall
short.

Using this automatic forecasting methodology for MLPs we
took part in the 2008 ESTSP forecasting competition. We
outperformed a set of benchmark methods and achieved a good
ranking for each time series in comparison to state-of-the art
algorithms from statistics and computational intelligence. Overall,
our proposed methodology ranked 2nd, demonstrating that a fully
automatic, purely data driven methodology that requires no
expert human intervention to specify NNs is feasible and can
perform well.

The novel feature evaluation algorithm of the iterative neural
filter (INF), used to automatically identify the number and the
period of the seasonalities that are present in a time series, is the
nucleus to our methodology. In this study we discussed the
underlying functionality and demonstrated its performance using
a set of synthetic time series and the ESTSP’08 dataset. However it
is necessary to run representative Monte Carlo simulations to
access its robustness, sensitivity and power on different data
conditions of time series length and patterns. The adequacy of
aliasing should be carefully monitored for the proposed INF and
explored for other forecasting algorithms, in particular for the
case of non-sinusoidal, discontinuous seasonality. Furthermore, it
may prove worthwhile to explore the potential of anti-aliasing
techniques in order to further increase accuracy in forecasting
applications. The proposed methodology aimed to overcome
some of the challenges encountered automatic NN modelling, in
particular towards high frequency data. Given the current
computational resources, high frequency data remains extremely
demanding and limits the amount of ad-hoc experimentation, in
particular for wrappers and model ensembles. In comparison to
monthly and daily data, an hourly time series contains 24 and 720
times more observations, respectively, within an identical time
period. The resulting increase in sample size creates various
unique challenges that are beyond the scope of this paper:
increasing input vector length to capture full seasons, handling
the increasing degrees of freedom in training, and the resulting
computational time – both in model identification and para-
meterisation. However, it is on these high-frequency datasets that
NN and other nonlinear algorithms of computational intelligence
have demonstrated preeminent performance in recent empirical
forecasting competitions such as the ESTP’08, and it is here that
they may prove their worth against the established statistical
benchmarks in future applications.
Appendix A

The synthetic time series to evaluate competing feature
selection algorithms are constructed using

Yt ¼ lþ
Xk

i ¼ 1

ai sin
2pt

Si

� �
þet , ð6Þ

where l denotes the level of the time series, and k the number of
sines with periodicity of Si to model seasonality of amplitude ai,
which is randomly chosen from a random uniform distribution
U(1, 20) for each of the k sines. Each time series is overlaid with
random noise et with Gaussian distribution N(0, s), using a
standard deviation s randomly picked from a uniform distribu-
tion U(S(ai)/2k, S(ai)/k) in order to provide a high noise to signal
ratio and to make the identification of seasonality sufficiently
challenging. The parameters used for the construction of the STS
and the identified periodicities of the seasonalities are sum-
marised in Table A1 (Note that Time Series A.1 is equivalent to
series A and B.1 to series B in Section 3.2.)
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