
 

 

 

  

Abstract - Research in forecasting with Neural Networks 

(NN) has provided contradictory evidence on their ability to 

model seasonal time series. Several empirical studies have 

concluded that time series should be deseasonalised prior to 

modelling, with contradictory evidence pointing to adequate 

selection of input vectors. However, the nature of seasonality 

itself has not been considered: econometric theory suggests that 

deterministic seasonality and stochastic seasonality need to be 

modelled differently, with only the latter requiring 

deseasonalisation. As prior research has failed to take the 

conditions of the underlying seasonality into consideration, this 

study explores how deterministic seasonality should be best 

modelled with NN to achieve accurate and robust forecasts. We 

consider different forms of modelling seasonality as 

autoregressive lags, through different encodings of explanatory 

variables and deseasonalisation. We evaluate the results 

regarding empirical accuracy and the parsimony of the input 

vector in order to limit the degrees of freedom, develop robust 

models and simplify the training of NN. Our findings are 

consistent with econometric literature, i.e. that no 

deseasonalisation is required for deterministic seasonality, and 

contributes to current research in NNs by identifying a more 

parsimonious coding of seasonality based on seasonal indices.  

I. INTRODUCTION 

EURAL networks (NN) are recognised as a potent 

forecasting tool with research and applications in a 

wide variety of disciplines [1, 2]. Given their theoretical 

properties, NNs are universal approximators, permitting 

them to approximate any measurable function to any desired 

degree of accuracy (and to generalise on unseen data as 

well) [3], a desirable property in forecasting. NN have 

proven their capabilities to forecast linear as well as 

nonlinear time series of synthetic and empirical data [4-6], 

and across a wide range of time series frequencies including 

monthly, weekly, daily data with their distinct data 

properties [7]. However, they are prone to criticism due to 

the lack of a sound methodology to determine valid and 

reliable models in empirical evaluations [8-10]. For instance, 

no consensus exists on how to select a relevant set of input 

variables and lags for NNs given the different time series 

components and properties of the dataset [1]; a recent 

literature survey identified 72% (out of 95) published papers  

model NNs based purely on invalid and unreliable trial and 

error approaches. This has a significant impact on the 
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consistency of NN performance and also hinders our 

understanding of how to model them [11]. Consequently it 

remains an important task to empirically evaluate competing 

methodologies for NN modelling with scientific rigor, in 

order to derive insight on best practices.  

One open research questions currently under discussion 

[1, 12] is to determine the most efficient and effective 

modelling approach for NNs on seasonal time series, with 

the related set of questions whether seasonality should be 

modelled directly or should be removed by deseasonalising 

the time series first. Hill et al. [6] showed that NNs using 

deseasonalised time series from the M1-competition 

outperformed statistical benchmark models, promising 

significant improvements in NN performance. Nelson et al. 

[13] (from the same research group) verified the effect of 

deseasonalisation using M1-data. They repeated the 

experiments of Hill et al. without deseasonalising, and 

provided further evidence that the forecasting performance 

of NN significantly deteriorate on seasonal data, therefore 

concluding that deseasonalisation is a necessary step in NN 

modelling. They postulate that deseasonalising time series 

allows NNs to focus on learning the trend and the cyclical 

components; to learn seasonality at the same time would 

require larger networks, resulting in a larger input vector, 

which may cause detrimental overfitting. Zhang and Qi [14] 

reach the same conclusion that deseasonalising helps. 

However, their research suggest that deseasonalising time 

series reduces long and dynamic autocorrelation structures 

that would make the choice of the input vector for NNs more 

difficult, thus leading to smaller, more parsimonious and 

hence robust models. Curry [12] examines the ability of NN 

to model seasonality from a theoretical perspective using 

data with different properties. His research suggests that NN 

require adequately long input vectors in order to capture the 

seasonal effects; ill selected and underspecified input vectors 

on the other hand can impair the ability of a NN to capture 

and forecast seasonality, implying that the results by Zhang 

and Qi can potentially hide input misspecification errors.  

However, none of the preceding research studies on NNs 

distinguishes between the different forms of seasonality, and 

hence the conditions under which one approach outperforms 

another. Reflecting upon the statistical literature, both 

deterministic seasonality and stochastic seasonality (seasonal 

unit roots) theoretically require different modelling 

approaches [15-17], which has been ignored in NN literature 

and the debate on how to model seasonality to date.  
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In this analysis we will argue that an adequate distinction 

implies a different modelling procedure – both from a 

theoretical perspective but also supported by the empirical 

evidence. Modelling deterministic seasonality is impaired by 

prior deseasonalisation of the time series, so that different 

modelling practises should be considered. To provide 

evidence we conduct an empirical evaluation of competing 

approaches to model seasonality using univariate 

(autoregressive) time series approaches, the use of external 

variables and differencing on simulated time series. We find 

that using a set of dummy variables can significantly 

improve forecasting accuracy over the current NN modelling 

‘best practise’ suggested by prior research, where 

seasonality is either removed or modelled using seasonal 

lags of the time series. Finally, we propose a parsimonious 

coding based on seasonal indices, which outperforms other 

candidate models in accuracy while keeping the degrees of 

freedom to a minimum in order to construct parsimonious 

NN architectures.  

The paper is organised as follows: section II discusses the 

different types of seasonality from a theoretical perspective. 

Section III introduces the methods that will be used to model 

deterministic seasonality, followed by information on the 

time series and the experimental design in section IV. 

Section V discusses the results comparing the different 

approaches to modelling deterministic seasonality, followed 

by conclusions and further research objectives in section VI. 

II. FORECASTING SEASONAL TIME SERIES 

A. Deterministic and Stochastic Seasonality 

Seasonality is generally defined as a reoccurring time 

series pattern within the calendar year, where its structure is 

defined by the frequency of the times series. A time series is 

said to have deterministic seasonality when its unconditional 

mean varies with the season and can be represented using 

seasonal dummy variables, 
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where yt is the value of the time series at time t, µ is the level 

of the time series, ms is the seasonal level shift due to the 

deterministic seasonality for season s, δst is the seasonal 

dummy variable for season s at time t, zt is a weak stationary 

stochastic process with zero mean and S is the length of the 

seasonality. Furthermore, the level of the time series µ can 

be generalised to include trend.  

In contrast to deterministic seasonality, seasonality can 

also be the result of an integrated autoregressive moving 

average (ARIMA) process,  

( ) ( ) τεθγφ LyL tS +=∆ ,   (3) 

resulting in a stochastic seasonality (or seasonal unit root), 

where L is the lag operator, ∆S is the seasonal difference 

operator, φ and θ are the coefficients of the autoregressive 

and moving average process respectively, γ is a drift, and 

εt ~ i.i.d. with zero mean and standard deviation σ
2
. Of 

course this can be expressed as a SARIMA model. The 

variance of yt under the case of deterministic seasonality is 

constant over t and the seasonal period s, which is not true 

here. This stochastic seasonal process can be viewed as a 

seasonal unit root process, i.e. for each s there is a unit root, 

which in turn requires seasonal differencing. More details 

about the seasonal unit root process can be found in [15-17]. 

B. Modelling NNs for Deterministic Seasonality  

Seasonal information can be included in NNs in a variety 

of ways, including various forms of explanatory variables. 

Note that deterministic seasonality as in (1) is defined as a 

series of seasonal level shifts ms, which describe the seasonal 

profile and are constant across time, i.e. ms = mst. Also note 

that as deterministic seasonality is defined in (1) the ∑ms = 0 

over a full season. This implies that with the appropriate 

transformations of µ and ms a set of S-1 or S binary seasonal 

dummy variables can be used to code the seasonality. 

Furthermore, due to zt each value of the time series deviates 

over its respective seasonal mean with a constant variance 

over both s and t, which means that the deterministic 

seasonal process forces the observations to remain close to 

their underlying mean [17]. Modelling (1) with S seasonal 

dummies and µ ≠ 0 using a linear model (e.g linear 

regression or a linear NN) introduces multicollinearity, 

hence S-1 dummies must be used [18]. For nonlinear 

methods such as NNs with only linear transfer functions and 

H > 1 multicollinearity can exist even for S-1 dummies, 

since the dummies provide input into several hidden nodes. 

This hinders inference from a NN, but does not necessarily 

harm its predictive power [1, 18]. As this also holds for the 

case of nonlinear transfer functions, both modelling using 

S-1 or S seasonal dummies may be adequate for NN models.  

An alternative way to code deterministic seasonality as in 

(1) is through its trigonometric representation:  
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where αk and βk create linear combinations of S / 2 sines 

and cosines of different frequencies following the ideas of 

spectral analysis of seasonality. Equations (1) and (2) have µ 

and zt expressed as separate components in both cases, 

allowing separate modelling of seasonality and the 

remaining time series components [17]. Note that if less than 

S / 2 linear combinations of sines and cosines are used the 

representation of seasonality is imperfect and it is 

approximated with some error, the size of which is related to 

the number of combinations used. Deterministic seasonality 

as expressed in (2) can equally be modelled in NNs using 

explanatory variables. Note that an alternative is to 

approximate (2) using less frequencies by increasing the 

number of hidden nodes H in a network [3].  

Following the same procedure, based on the increase of H, 

NN can approximate seasonal patterns by combining 

seasonal dummies in a single integer dummy defined as 

δ = [1, 2...S] [19], which is neither permissible nor explored 

in linear models. Alternatively the set of ms can be combined 

to form a series of interval scaled seasonal indices that can 



 

 

 

be used as an explanatory variable for the NN, with the 

requirement to predetermine the ms beforehand.  

C. Misspecifying NNs for Deterministic Seasonality 

For our analysis it is interesting to examine what occurs if 

deterministic seasonality is misspecified as a seasonal unit 

root process. Considering seasonal differences (1) becomes 

tStS zy ∆=∆ .     (4) 

Essentially in (4) seasonality has been removed, i.e. a 

deseasonalised form of yt is modelled. Comparing (1) and 

(4) we can deduce that it is now impossible to estimate ms 

and furthermore ∆S zt is overdifferenced [17]. Therefore, it is 

preferable to keep deterministic seasonality and model it 

appropriately.  

However, neglecting the properties of the deterministic 

seasonality NNs are frequently modelled as a misspecified 

stochastic seasonal unit root process, with the problems 

implied above. One alternative is to use seasonal integration 

to remove seasonality and another alternative would be to 

use an adequate AR structure to model the seasonality as 

discussed in [12]. Note that much of the debate in literature 

regarding the deseasonalisation of time series (see section I) 

falls in the latter two alternatives, which in theory are not 

advisable for deterministic seasonality. However, for 

practical applications with small samples it can be shown 

that it is difficult to distinguish between deterministic and 

stochastic seasonality [17], therefore these alternatives are 

still viable options that warrant experimental evaluation. 

III. EXPERIMENTAL DESIGN 

A. Time Series Data 

We employ eight synthetic time series to evaluate the 

different approaches to model deterministic seasonality 

using NN. The time series are constructed using as a data 

generating process the dummy variable representation of 

deterministic seasonality (1). All time series have S = 12, i.e. 

simulate monthly data, and are 480 observations long. Two 

different sets of ms are modelled, reflecting two different 

seasonal patterns (A & B) derived from retail sales with 

µ = 240 and zt is εt ~ i.i.d. with (0, σj
2
). These are 

superimposed with four levels of increasing random noise 

σj
2
: for time series without noise σ = 0 is used (i.e. zero error 

for all t). For low, medium and high noise we use σ={1, 5, 

10} respectively. Note that the synthetic time series are 

constructed in a stricter way than required by (1) in order to 

create time series in which only the effect of the 

deterministic seasonal pattern requires modelling, 

simplifying the specification of the input vector of the NN to 

focus solely on the effects of the different seasonal coding 

schemes. For the empirical evaluation all series are split in 

three equal subsets of ⅓
rd

 training, ⅓
rd

 validation and ⅓
rd

 test 

data of 160 observations. The first 72 observations of both 

time series patterns and 4 noise levels are plotted in fig. 1: 
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Fig. 1.  Plot of the first 72 observations of each synthetic time series. 

B. Evaluating Empirical Accuracy  

We conduct a fixed horizon, rolling origin evaluation in 

order to assess the error of forecasting t+h = 1, .., 12 months 

in the future across multiple time origins. This evaluation 

scheme is preferred because it provides a reliable estimation 

of the out of sample error [20]. Two established and robust 

error measures are used: the mean absolute error (MAE) 

allows a direct comparison of the predictive accuracy and 

the known noise level by evaluating the absolute deviation 

of actuals Xt and the forecast Ft for all periods t in the test 

set. In addition the symmetric mean absolute percent error 

(sMAPE) is used as a scale independent accuracy measure to 

facilitate comparisons across time series. The accuracy of 

the competing NN models is evaluated for statistically 

significant differences using the nonparametric Friedman 

test and the Nemenyi test, to facilitate an evaluation of 

nonparametric models without the need to relax assumptions 

of ANOVA or similar parametric tests [21]. To compare the 

NN models against the benchmark the best NN initialisation 

in the validation set is used. 

C. Neural Networks for Time Series Prediction 

We limit our evaluation to the multilayer perceptron 

(MLP), the most widely employed NN architecture [1]. The 

advantage of MLP is that they are well researched regarding 

their properties and their proven abilities in time series 

prediction to approximate and generalise any linear or 

nonlinear functional relationship to any degree of accuracy 

[22] without any prior assumptions about the underlying 

data generating process [23], providing a powerful 

forecasting method for linear or non-linear, non-parametric, 

data driven modelling. In univariate forecasting MLP is used 

similarly to a regression model, capable of using as inputs a 

set of lagged observations of the time series to predict its 

next value [7]. Data are presented to the network as a sliding 

window over the time series history. The NN tries to learn 

the underlying data generation process during training so 

that valid forecasts are made when new input values are 

provided [24]. In this analysis single hidden layer NN are 

used, based on the proof of universal approximation [22]. 

The general function of these networks is 



 

 

 

∑ ∑
= =









++=

H

h

I

i

ihih xgwXf
1 0

00),( γγββ . (5) 

X = [x0, x1, …, xn] is the vector of the lagged observations 

(inputs) of the time series and w = (β, γ) are the network 

weights. I and H are the number of input and hidden units in 

the network and g(·) is a non-linear transfer function [25]. In 

this analysis the hyperbolic tangent (tanh) transfer function 

is used, which is frequently used for NNs [26].  

D. Seasonal Encodings for Neural Networks 

We develop and compare MLPs that code the 

deterministic seasonality of the time series using the seven 

alternative encodings described in section II.B and C. 

The common coding of deterministic seasonality through 

monthly seasonal dummy variables is implemented in 

models Bin11 and Bin12 which use S-1=11 and S=12 

seasonal binary dummy variables respectively. The integer 

dummy variable representation uses only a single integer 

explanatory variable that repeats values from 1 to 12 (named 

Int). The trigonometric representation is modelled through 

the use of two dummy variables, one for sin(2πt/12) and one 

for cos(2πτ/12) and is named SinCos. Finally, seasonal 

indices for the time series are identified by calculating the 

average value for each period of the season in the training 

set. This is an adequate estimation since the time series 

exhibit no trend or irregularities. The seasonal indices are 

repeated to create an explanatory variable which is then used 

as the only input to the MLP model SIndex. No time series 

lags are used for these models.  

To model deterministic seasonality as stochastic process a 

univariate MLP model is used that employs lag t-1 and t-12 

(named AR). To model seasonality as a seasonal unit root 

process the time series is used after seasonal integration, 

replicating the common approach of removing seasonality 

prior to inputting the time series to the MLP. No lags are 

used and the correct level is estimated by the MLP by 

assigning the correct weights to the bias terms in the 

different nodes (named SRoot). An overview of the inputs 

for each model is provided in table I.  

TABLE I 

Summary of MLP Inputs 

Model Lags* Explanatory variables** No of inputs 

AR 1, 12 - 2 

Bin11 - 11 Seasonal Dummies 11 

Bin12 - 12 Seasonal Dummies 12 

Int - Integer Dummy [1,2...12] 1 

SinCos - sin(2πt/12), cos(2πt/12) 2 

Sindex - Seasonal Indices 1 

SRoot -*** - 0 
* The Lags specify the time lagged realisations t-n used as inputs; ** For all 

explanatory variables only the contemporary lag is used; *** Time series is 

modelled after seasonal integration, i.e. ∆Syt.  

 

All the other parameters of the MLPs are held constant for 

all models. This allows attributing any differences in the 

performance of the models solely to the differences in 

modelling seasonality. All MLP use a single hidden layer 

with six hidden nodes and are trained using the Levenberg-

Marquardt algorithm. This algorithm requires setting the µLM 

and its increase and decrease steps. Here µLM=10
-3

, with an 

increase step of µinc=10 and a decrease step of µdec=10
-1

. For 

a detailed description of the algorithm and the parameters 

see [27]. The maximum training epochs are set to 1000. The 

training can stop earlier if µLM becomes equal of greater than 

µmax=10
10

 or the validation error increases for more than 50 

epochs. This is done to avoid over-fitting. When the training 

is stopped the network weights that give the lowest 

validation error are used. Each MLP is initialised 50 times to 

account for randomised starting weights and to provide an 

adequate sample to estimate the distribution of the forecast 

errors in order to conduct the statistical tests. The MLP 

initialisation with the lowest error for each time series on the 

validation dataset is selected to predict all values of the test 

set. Lastly, the time series and all explanatory variables that 

are not binary are linearly scaled between [-0.5, 0.5].  

E. Statistical Benchmark Methods 

Any empirical evaluation of time series methods requires 

the comparison against established statistical benchmark 

methods, in order to assess the increase in accuracy and its 

contribution to forecasting research (a fact often overlooked 

in NN experiments [11]). In this analysis we use seasonal 

exponential smoothing models (EXSM) with appropriately 

selected additive seasonality as a benchmark. The smoothing 

parameters are identified by optimising the one step ahead 

in-sample mean squared error. This model is selected as a 

benchmark due to its proven track record in univariate time 

series forecasting [8]. For more details on exponential 

smoothing models and the guidelines that were used to 

implement them in this analysis see [28].  

IV. RESULTS 

A. Nonparametric MLP Comparisons 

All competing MLPs are tested for statistically significant 

differences using the Friedman and the post-hoc Nemenyi 

tests based on the mean rank of the errors. As MAE and 

sMAPE provided the same ranking, and both tests provided 

consistent results regardless of error measure, the results 

using a single measure are provided in table II.   

The Friedman test indicates that across all time series, 

across different noise levels and for all time series separately 

there are statistically significant differences among the MLP 

models. Inspecting the results of the Nemenyi tests in table 

II we get a more detailed view on the ranking of each 

individual model and among which models there are 

statistically significant differences. It can be observed that 

across all different noise levels and across all time series the 

SIndex outperforms all other models with a statistically 

significant difference from the second best model. In all 

cases the Bin11 and Bin12 perform equally with no 

statistically significant differences both ranking second after 

SIndex. When all time series or only the no and low noise 

time series are considered, the SinCos has no statistically 

significant differences with the seasonal binary dummies 

Bin11 and Bin12 models. For the case of medium and high 

noise time series the SinCos ranks third after the SIndex and 



 

 

 

seasonal binary dummy variables models. This demonstrates 

that although the SinCos model is not equivalent to the 

trigonometrical representation of deterministic seasonality as 

expressed in (2) it is able to approximate it and in many 

cases with no statistically significant differences from the 

equivalent seasonal dummy coding. Furthermore, this 

representation is S/4 times more economical in inputs 

compared to (2) and S-2 and S-1 inputs more economical 

from (1) or Bin11 and Bin12 respectively. For the low, 

medium and high noise the Int model follows fifth in 

ranking. Although this model performs worse than the 

previous seasonality encodings it still outperforms the 

misspecified seasonal models AR and SRoot. This is not true 

for the no noise time series, which also affects the overall 

ranking across time series as well. The AR model follows. 

This demonstrates that it is better to code the deterministic 

seasonality through explanatory dummy variables, than as an 

autoregressive process, as it would be fitting for stochastic 

seasonality. Furthermore, in agreement to the discussion in 

II.C, removing the seasonality through seasonal integration, 

as in SRoot, performs poorly and ranks last in most cases. 

The reason for this is that the NN are not able to estimate 

directly the ms and ∆Syt is overdifferenced. Note that in the 

case of no noise all models with the exception of Int are able 

to capture the seasonality perfectly with no error.  

TABLE II 

Summary of MLP nonparametric comparisons 

Time series All 
No 

noise 

Low 

noise 

Medium 

noise 

High 

noise 

Friedman 

p-value 
0.000 0.000 0.000 0.000 0.000 

  Nemenyi Mean Model Rank*� 

AR 1521.7 330.0 520.3 522.6 555.0 

Bin11 1300.5 330.0 251.1 234.9 239.3 

Bin12 1302.3 330.0 247.5 238.5 246.3 

Int 1548.9 473.5 461.3 422.2 346.0 

SinCos 1310.0 330.0 254.8 250.7 257.2 

Sindex 1241.1 330.0 143.6 162.3 182.5 

SRoot 1579.0 330.0 575.0 622.3 627.3 

  Nemenyi Ranking at 5% significance level* 

AR 5 1 6 6 6 

Bin11 2 1 2 2 2 

Bin12 2 1 2 2 2 

Int 6 7 5 5 5 

SinCos 2 1 2 4 4 

Sindex 1 1 1 1 1 

SRoot 7 1 7 7 7 
* In each column MLP with no statistically significant differences under the 

Nemenyi test at 5% significance are underlined; �the critical distance for 

the Nemenyi test at 1% significance level is 10.5, at 5% significance level is 

9.0 and at 10% significance level is 8.2. 

 

It is apparent that the best method to model the 

deterministic seasonality is to use the seasonal indices as an 

explanatory variable for the MLP. Not only this method 

performs best with statistically significant difference from 

the second best model, but also it is very parsimonious, 

requiring a single input to model the deterministic 

seasonality, as it can be seen in table I. This is an important 

finding, since this coding of seasonality is not widely used, 

although it is a direct extension of (1).  

B. Comparisons against Benchmarks and Noise Level 

Taking advantage of the synthetic nature of the time series 

we can compare directly the error of each forecasting model 

with the artificially introduced error level and derive how 

close is each model to an ideal accuracy. The ideal accuracy 

is when the model’s error is exactly equal to the noise, since 

that would mean that the model has captured perfectly the 

data generating process and ignores completely the 

randomness. On the other hand, a lower error than the noise 

level would imply possible overfitting to randomness. The 

comparison is done in MAE for each time series 

individually. The results are presented in fig. 2. Moreover 

the benchmark accuracy in MAE for each time series is 

provided in the same figure.  

In fig. 2 it is clear than when there is no noise, for both 

seasonal patterns, all MLP models and the benchmark 

forecast the time series perfectly with zero error. Comparing 

the MLP models to the benchmark the misspecified AR and 

SRoot models perform worse than EXSM, with the SRoot 

model performing consistently last. This demonstrates that 

for the case of deterministic seasonality deseasonalising the 

time series, here through seasonal integration, hinders the 

NN to forecast the time series accurately. For both seasonal 

patterns for the low noise time series 2 and 6 all MLP 

perform worse than the benchmark. The opposite is true for 

the Bin11, Bin12, Int, SinCos and SIndex MLP models for 

the higher noise level time series. This implies that NN 

perform better than the statistical benchmark in high noise 

time series, being able to capture the true data generating 

process better.  

Comparing the models accuracy with the known error due 

to noise it is interesting that all the MLP models, with the 

exception of the misspecified AR and SRoot, for all time 

series are very close to the ideal accuracy, i.e. having error 

only due to randomness. Note that for the validation set, on 

which the best performing initialisation for each of the NN 

models was chosen, their error is practically only due to 

noise. The benchmark error consistently increases as the 

noise level increases. For the case of low noise time series 

EXSM manages to forecast the time series with the error 

being solely due to randomness, implying a very good fit to 

the data generating process. The results are consistent across 

both seasonal patterns.  

TABLE III 

Summary sMAPE across all time series 

Model Training subset Validation subset Test subset 

AR 1.90% 1.94% 1.72% 

Bin11 1.60% 1.59% 1.45% 

Bin12 1.58% 1.58% 1.46% 

Int 1.62% 1.61% 1.49% 

SinCos 1.59% 1.59% 1.47% 

Sindex 1.60% 1.58% 1.44% 

SRoot 2.36% 2.21% 1.91% 

EXSM 1.86% 1.68% 1.52% 

The best performing model in each set is marked with bold numbers. The 

models that are outperformed by the EXSM benchmark are underlined 

 

Evaluating the performance of all models across the three 

training, validation and test subsets the models perform 

consistently and there are no clues of overfitting to the 



 

 

 

training set and all models are able to generalise well on the 

test set. Using MAE it is impossible to aggregate the results 

across different time series. Instead, the scale independent 

sMAPE is used. Summary accuracy sMAPE figures for all 

time series are provided in table III. 

The results are consistent with fig. 2. The AR and SRoot 

models are outperformed by the benchmark, which is turn is 

outperformed by all other MLP models. In agreement with 

the results in table II the SIndex model is overall the most 

accurate, followed by the Bin12 and Bin11. Note that the 

small sMAPE figures imply that all the models managed to 

capture the seasonal profile in all the time series and a visual 

inspection of the forecasts would reveal very small if no 

differences at all. Finally, the overall error level seems to be 

different between the three subsets. This is due to the 

random noise. Although each set contains 160 observations, 

which simulates in total 40 years of data, it was not enough 

to ensure equal noise distribution across all subsets. 

III. CONCLUSIONS 

We have evaluated different methodologies to model time 

series with deterministic seasonality. By exploring the 

theoretical properties of deterministic seasonality we show 

that the current debate in literature on how to model 

seasonality with NN does not address the problem correctly, 

omitting the properties of the type of seasonality. Seven 

competing approaches to model deterministic seasonality are 

evaluated and compared against a seasonal exponential 

smoothing model. SIndex, which uses the estimated seasonal 

indices as input to a NN, outperforms all competing MLP 

models and the benchmarks with statistically significant 

differences. Moreover, this approach to model seasonality is 

very parsimonious, requiring only one additional input. This 

may have particularly significant implications for high 

frequency data with long seasonal periods, often resulting in 

a large dimensionality of the input vector that can cause 

problems in training NN models.  

This study does not thoroughly address the issue of how to 

best estimate the seasonal indices. In this study it proved 

relatively easy to obtain a good estimation of the seasonal 

indices for all time series, while this may become more 

problematic in the presence of irregularities, trends and 

multiple seasonalities. For future evaluations it is important 

to evaluate the robustness of the findings with different 

approaches to estimate the seasonal indices. Similarly, this 

study should be extended to more time series patterns and 

empirical time series that exhibit deterministic and stochastic 

seasonality, which will allow us to validate the findings and 

provide a reliable solution for practical applications.  
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Time Series 8 – MAE – High Noise – Seasonal Pattern B 

0 5 10 15

AR
Bin11
Bin12

Int
SinCos
SIndex
SRoot
EXSM

Training set
11.42
8.51
8.64
8.87
8.57
8.56

12.71
10.20

NNNN 0 5 10 15

AR
Bin11
Bin12

Int
SinCos
SIndex
SRoot
EXSM

Validation set
10.52
8.02
7.86
8.07
7.91
7.82

11.19
8.53

NNNN 0 5 10 15

AR
Bin11
Bin12

Int
SinCos
SIndex
SRoot
EXSM

Test set
9.31
7.18
7.41
8.09
7.52
7.29
9.62
7.99

NNNN
 

 
Fig. 2.  MAE for each time series for each subset for all models. The noise level is marked by a thick black vertical line. Light coloured bars are models 

which are better than the benchmark (EXSM). The value of each error is provided at the right side of each row. 

 


