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Abstract. The identification and selection of adequate input variables and lag 
structures without domain knowledge represents one the core challenges in 
modeling neural networks for time series prediction. Although a number of linear 
methods have been established in statistics and engineering, they provide limited 
insights for nonlinear patterns and time series without equidistant observations and 
shifting seasonal patterns of varying length, leading to model misspecification. 
This paper describes a heuristic process and stepwise refinement of competing 
approaches for model identification for multilayer perceptrons in predicting the 
ESTSP’07 forecasting competition time series.   

1. Introduction 

Artificial neural networks (NN) have found increasing consideration in forecasting 
theory, leading to successful applications in time series prediction and explanatory 
forecasting [1]. Despite their theoretical capabilities, NN have not been able to 
confirm their potential in forecasting competitions against established statistical 
methods, such as ARIMA or Exponential Smoothing [2]. As NN offer many degrees 
of freedom in the modelling process, from the selection of activation functions, 
adequate network topologies of input, hidden and output nodes, learning algorithms 
etc. their valid and reliable use is often considered as much an art as science. Previous 
research indicates, that the parsimonious identification of input variables and lags to 
forecast an unknown data generating process without domain knowledge poses a key 
problem in model specification [1, 3]. This becomes particularly important, as 
complex time series components may include deterministic or stochastic trends, 
cycles and seasonality, interacting in a linear or nonlinear model with pulses, level 
shifts, structural breaks and different distributions of noise. Although a number of 
statistical methods have been developed to support the identification of linear 
dependencies, their use in nonlinear prediction has not been investigated in detail.  
 Therefore a structured evaluation of different methodologies to specify the input 
vector of NN in time series forecasting is required. This paper contributes to the 
discussion, presenting an analysis of different methodologies of input variable 
identification through an empirical simulation on the ESTSP forecasting competition 
time series.  This paper is organized as follows. First, we briefly introduce NN in the 
context of time series forecasting and various methodologies for input variable 



identification. Section III presents the experimental design and the results obtained. 
Finally, we provide conclusions and future work in section IV. 

2. Methods 

2.1 Forecasting with Multilayer Perceptrons 

Forecasting with NNs provides many degrees of freedom in determining the model 
form and input variables to predict a dependent variable ŷ . Through specification of 
the input vector of n lagged realisations of only the dependent variable y a 
feedforward NN can be configured for time series forecasting as 

( )1 1 1ˆ , ,...,t t t t ny f y y y+ − − += , or by including i explanatory variables ix of metric or 
nominal scale for causal forecasting, estimating a functional relationship of the form 

( )1 2ˆ , ,..., zy f x x x= . By extending the model form through lagged realisations of the 
independent variables ,i t nx −  and dependent variable t ny −  more general dynamic 
regression and autoregressive (AR) transfer function models may be estimated. To 
further extend the autoregressive model forms of feedforward architectures, recurrent 
architectures allow incorporation of moving average components (MA) of past model 
errors in analogy to the ARIMA-Methodology of Box and Jenkins [4]. Due to the 
large degrees of freedom in modelling NN for forecasting, we present a brief 
introduction to specifying feedforward NN for time series modelling; a general 
discussion is given in [5, 6]. Forecasting time series with NN is generally based on 
modelling a network in analogy to an non-linear autoregressive AR(p) model using a 
feed-forward Multilayer Perceptron (MLP) [1]. The architecture of a MLP of arbitrary 
topology is displayed in figure 1.  
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Fig. 1:  Autoregressive MLP for time series forecasting. 

 In time series prediction, at a point in time t, a one-step ahead forecast 1ˆ +ty  is 
computed using p=n observations 11 ,,, +−− nttt yyy …  from n preceding points in time 
t, t-1, t-2, …, t-n+1, with n denoting the number of input units of the ANN. Data is 
presented to the MLP as a sliding window over the time series observations. The task 
of the MLP is to model the underlying generator of the data during training, so that a 
valid forecast is made when the trained ANN network is subsequently presented with 
a new input vector value [5].  



 The network paradigm of MLP offers extensive degrees of freedom in modeling 
for prediction tasks. Structuring the degrees of freedom, each expert must decide upon 
the selection and sampling of datasets, the degrees of data preprocessing, the static 
architectural properties, the signal processing within nodes and the learning algorithm 
in order to achieve the design goal, characterized through the objective function or 
error function. For a detailed discussion of these issues and the ability of NN to 
forecast univariate time series, the reader is referred to [1]. The specification of the 
input vector has been identified as being particularly crucial to achieving valid and 
reliable results, and will be examined in the next section. 

2.2 Input Variable Selection for Multilayer Perceptron predictions 

The identification of relevant input variables and variable lags aims at capturing the 
relevant components of the data generating process in a parsimonious form. In time 
series modeling, it is closely related with identifying the underlying time series 
components of trend and seasonality and capturing their deterministic behavior in lags 
of the dependent variable. A simple visual analysis of the time series components 
frequently fails to reveal the complex interactions of autoregressive and moving 
average components, multiple overlying and interacting seasonalities and nonlinear 
patterns. Several methodologies have been developed for input variables selection of 
the significant lags in forecasting, originating from linear statistics and engineering. 
However, currently no uniformly accepted approach exists to identify linear or 
nonlinear input variables [1]. 
 Seasonality is frequently identified following the Box-Jenkins methodology of 
linear statistics [4] as a mixture of autoregressive and moving average components. 
The specification of a parsimonious input vector requires a stepwise analysis of the 
patterns in the plotted autocorrelation function (ACF) and partial autocorrelation 
function (PACF) to identify statistically significant autoregressive lags of the 
dependent variable and of moving average lags of the errors of past predictions. The 
iterative methodology is frequently employed in identifying significant lags for NN 
forecasting, following Lachtermacher and Fuller [7]. As in detrending, no consensus 
exits on whether a time series with identified sesonality should be deseasonalised first 
to enhance the accuracy of NN predictions [3, 8, 9] or seasonality be incorporated as 
AR- and MA-components in the NN structure [10-13]. Earlier studies in MLP 
modeling claim that an analysis of the AR-terms purely from PACF-analysis is 
sufficient to identify the relevant lags of the time series [14]. However, an AR-
analysis can only reveal linear correlations within the time series structure, but not of 
linear moving average components that require the use of recurrent NN architectures. 
In addition, ACF and PACF analysis allow no identification of nonlinear 
interdependencies [1] 
 In addition, spectral analysis (SA) may provide additional information on the 
linear autoregressive structure of multiple seasonalities with overlaying periodicities 
in comparison to an ACF - & PACF-analysis [15], albeit losing information on the 
potential moving average structure. SA expresses a time series as a number of 
overlaid sine and the cosine functions of different length or frequency. It identifies the 
correlation in a periodigram using Fast Fourier Transforms (FFT), which plot the 
power spectral density versus the frequency of the signal to identify frequencies of 



high power as an indication of a strong periodicity. To recode the power spectrum as 
lags instead of frequencies, we plot the horizontal axis of the periodogram as n/2 lags 
of the time series. This allows a direct association of the power and lags, since the 
power is expressed in non-continuous terms and directly associated with a specified 
lag. Significant spikes in the periodigram identify interrelations as input lags for the 
NN model, which will allow the network to learn and extrapolate the overlaying 
periodicities. Consequently, SA can be employed in analogy to the ARIMA-
methodology to identify periodicities and lags in the time series.  

3. Experimental Design 

3.1 Exploratory Data Analysis 

A single time series of 875 observations, displayed in fig. 1, was provided for the 
forecasting competition of the 2007 European Time Series Symposium (ESTSP). 
 

 
Fig. 2: ESTP2007: Competition time series  

 The ESTSP competition evaluates the forecasting accuracy on a single time 
series from a single time origin using the mean squared error (MSE) on the next 15 
and the next 50 observations. No domain knowledge was provided to aid the 
identification of a suitable input vector or network architecture, making the selection 
of input variables one of the core problems in the competition task. Several different 
modelling approaches were evaluated, including visual analysis, Autocorrelation 
analysis and Spectral analysis using FFT.  
 A visual analysis of the time series reveals a non-trended, seasonal structure of 
approximately 52 observations with a high signal to noise ratio and a single seasonal 
outlier that promises easy approximation and extrapolation with a deterministic sine 
function and exogenous outlier correction. A further visual analysis of the repeating 
sine pattern displays the repetitive structure in a seasonal diagram, overlying each 
season containing 52 observations as separate time series displayed in fig. 2. The 
seasonal diagram confirms a general seasonal structure and two outliers. Although the 
series seems to obey a 52 observation seasonal length, the peaks of multiple series do 
not correlate adequately as visualised by the horizontal shift of the series. In contrast 
to a vertical variation caused by the inherent randomness of the series this indicates an 
inconsistent or shifting seasonal pattern. The length of 16.8 seasons in the complete 
series also suggests a seasonality of varying length, rather then an incomplete time 
series with 9 missing observations. To evaluate this a simple benchmark using a 52 
period seasonality in a t-52 lag structure is modelled and evaluated in MLPNAIVE . 
 



 
Fig. 3: Seasonal diagram of a 52 observations length 

 Furthermore, the time series was annotated in a descriptive analysis, to analyse 
the properties of the seasonal structure of the time series in further detail. Fig. 3 shows 
the time series plot overlayed with a sine of 52 observations period length.  
 

 
Fig. 4: Time series overlaid by a 52 observations period sine.  

 Two anomalous seasonal patterns are evident from observation 350 to 450 and 
in the last season from 825 to 875. Before each anomalous pattern 7 normal seasons 
are identifiable, with a further pattern of 2 seasonal peaks with increased magnitude 
every 2 and 3 seasonal patterns apart, indicated as shaded seasons in fig. 3. Although 
this may suggest a structural pattern in the data generating process, and that an 
important deviation from the more general model form may be expected for the final 
ex ante forecasted seasonality, too limited evidence of 1 full cycle is provided. Hence 
we must consider leaving the anomalies as part of the general model structure or 
modelling them as outliers using binary dummy variables for NN predictions. 
 Additionally, a comparison of the time series in fig.3 and a sine function with 
constant seasonality of 52 observations reveals a varying length of the seasonal 
patterns. To quantify the pattern of varying seasonal length we estimate the number of 
observations between each seasonal maxima and minima, applying a 9 period moving 
average to smooth out randomness. The variation of seasonal lengths in Table 1 
shows an average length of 52.06 observations between minima with a standard 
deviation of 2.59 observations and a significant range of up to 10 observations.  
 

Season 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Length 52 52 51 51 53 51 55 53 50 51 56 49 50 53 58 48 

Table 1: Varying seasonal lengths of the time series.  

 The average length of the seasonality of 52.06 is supported by the visual 
analysis of the seasonal pattern. However, it biases the identification through ACF 
and PACF analysis as well as the SA periodigrams, as the temporal interdependencies 
vary along the time series. Also, the varying seasonal length provides problems as 



conventional MLP models assume an AR(p)-process with a deterministic seasonality 
in an input vector of fixed length. However, the varying seasonality appears to be not 
entirely stochastic, as a plot of the seasonal lengths in Fig. 4 suggests a regular pattern 
that may allow exploitation to predict the seasonal length of the forecasted period 
through the model form or an explanatory variable.  
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Fig. 5: Length of the time series “sine blocks” 

 In contrast, the autocorrelation analysis following the Box-Jenkins methodology 
reveals contradicting information on the more complex structure of the time series. 
The analysis of the ACF and PACF patterns provided in figure 5a and 5b allow an 
iterative identification of the significant seasonal or shorter lags using single or 
seasonal differencing.  
  

a.) b.)

Fig. 6: ACF plot (a.) and PACF plot (b.) of the ESTSP competition time series 

 The information on the seasonal structure derived from fig. 5 is ambiguous. The 
ACF plot in fig. 5a reveals a significant seasonal autoregressive process in a decaying, 
sinusoid pattern of the ACF of a length shorten then 52 periods. In contrast, in the 
PACF of figure 3b only the first lag is found to be statistically significant at a 0.95 
level, and no significant lags are identified around the 26th or 52nd lag. Hence we can 
not conclude a statistically significant linear seasonal autoregressive process of length 
52 from the ACF analysis, despite the series visual appearance. In addition, no 
moving average process is identified either. An augmented Dickey-Fuller unit root 
test confirms the stationary form of the time series; hence further differencing 
provides to no additional information. Consequently, the Box-Jenkins methodology 
does not allow valid and reliable identification of the model form of this time series, 
which will later be reflected in the poor performance of the MLPACF candidate models 
created using the input vector identified by the ACF-Analysis. 
 To further analyse the periodicity of the time series a spectral analysis was 
conducted to reveal information that the autocorrelation analysis may have missed. A 
variation of a periodogram shows the first 60 lags instead of the frequency along the 
horizontal axis in fig. 6, as the remaining lags were found to be insignificant. 
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Fig. 7: Periodogram expressed in lags for the first 60 lags. 

 The periodigram in fig. 6. identifies the 1st and the 18th lag as highly significant, 
plus a set of additional lags {2, 3, 4, 6, 7, 8, 9, 14, 17, 19, 20, 22, 34, 35, 51} to be of 
lesser significance. Interestingly, the 52nd lag is again insignificant despite the visual 
appearance of a 52-observation seasonality. In contrast, lag 51 and preceding lags are 
found to be significant, which contradicts the analysis in the seasonal diagram in fig. 
2 and the ACF and PACF cycles of 26 observations in figure 3a. As different 
approaches of data exploration lead to different input vectors we consider both lag-
groups as candidate models MLPFFT in the later evaluation to build MLP forecasts. 

3.2 Artificial Neural Network Models 

We create a NN model for each of the three candidate methods of data exploration. 
First, based upon the visual analysis of the seasonal diagram an input vector 
containing only the last seasonal lag of the dependent variable yt-51 is created, named 
MLPNAIVE according to the seasonal Naïve forecasting method [16] which serves as a 
benchmark. In addition, two NN candidate architectures using the input vector 
identified by the Box-Jenkins methodology of autocorrelation analysis are created, 
using lags of {yt, yt-1, yt-2} named MLPBJ-1 and using {yt, yt-1, yt-2, yt-51} named MLPBJ-2 
including the plausible ACF information found statistically insignificant in the PACF 
function. Using the spectral analysis and FFT to determine input lags, three distinct 
candidate models were created, using additional information on the time variation of 
the seasonality and the outlier seasons. First, a basic MLPFFT was created using an 
input vector of the significant lags as identified by the SA {yt, yt-1, …, yt-8, yt-13, yt-16, 
…, yt-19, yt-21, yt-33, yt-34, yt-50}. In addition, a MLP using only the highly significant 
lags of {yt, yt-17} is evaluated but discarded due to significantly inferior results.  
 In order explicitly model the varying length of he seasonal cycles in the time 
series an explanatory variable is created to encode the seasonal length. Using the 
number of observations between consecutive minima in table 1 the relative position of 
each observation in each season was calculated. We divided an arbitraty number of 
100 by the number of observations per season, creating a time series of {2, 4, 6, …, 
100} for a season with 50 observations, {1.851, 3.703, 5.555, …, 100} for a season 
with 54 observations etc. Essentially, this created a temporal mapping that translated 
the relative position of each observation in a season of varying length onto a 
stationary level. A MLPTEMP using the temporal encoding as an explanatory time 
series xt was created, using only the explanatory variable {xt+1} in t+1 as an input. In 
addition, a topology using the lags identified from the FFT was created utilising the 
lags only for the dependent time series {yt, yt-1, …, yt-8, yt-13, yt-16, …, yt-19, yt-21, yt-33, yt-

34, yt-50} and {xt+1} for MLPTEMP-FFT-1 , using the FFT lags only on the explanatory 



time series of the temporal encoding {xt, xt-1, …, xt-8, xt-13, xt-16, …, xt-19, xt-21, xt-33, xt-34, 
xt-50} for MLPTEMP-FFT-2, and using the FFT lags on both the time series yt and the 
temporal encoding xt for MLPTEMP-FFT-3.  
 In order to eliminate the impact of the two abnormal seasonal profiles in the mid 
section of the time series a binary dummy variable zt∈{0, 1} was created with the 
value ‘1’ for the two abnormal seasons and ‘0’ otherwise. An input vector using only 
contemporaneous realizations of the explanatory variables for temporal encoding xt 
and the time series of the binary dummies zt was created {xt+1, zt+1} for MLPBIN-TEMP. 
In addition, corresponding topologies using the identified lags from FFT analysis 
were created for only the dependent variable yt as MLPBIN-TEMP-FFT-1, using the FFT 
lags for both time series of the dependent variable yt and time mapping xt as MLPBIN-

TEMP-FFT-2 and a topology using the FFT lags only for the explanatory series for time 
mapping as MLPBIN-TEMP-FFT-3. Finally, we created a topology using the FFT lags on 
all three time series yt, xt and zt as MLPBIN-TEMP-FFT-4. 
 For the comparative analysis of alternative input vectors prior to the final 
predictions the time series was sequentially split into 60% observations for training, 
20% for validation and 20% for out of sample testing. All data was linearly scaled 
into the interval of -0.6 to 0.6 to avoid saturation effects of the activation functions. 
As no indication for a MA-process that would require recurrent topologies could be 
determined from the ACF & PACF data analysis, we limited our evaluation to 
feedforward architectures of MLP. All MLPs architecture contained a single output 
node for iterative one-sep ahead forecasts up to 50 steps into the future, 

1 2 50
ˆ ˆ ˆ, , ...,t t ty y y

+ + +
. For each MLP candidate, we evaluate topologies with 1 … 20 

hidden nodes in steps of 4 for a single and two hidden layers. Each network was 
initialised 20 times with randomised starting weights to account for local minima. It 
was then trained for 1000 epochs on minimising the final evaluation criteria MSE 
using the backpropagation algorithm with an initial learning rate of η=0.5 that was 
decreased by 1% every epoch. Training was terminated using early stopping if the 
MLP did not decrease the MSE over 0.1% in 100 epochs. A composite error of 30% 
training MSE and 70% validation MSE was used to avoid overfitting effects on the 
validation set in early stopping. We select the network topology and initialisation with 
the lowest composite early stopping error and evaluate its accuracy. All MLP models 
were calculated using the software BISlab Intelligent Forecaster (IF).  

4. Experimental Results 

The experimental results provided in table 2 give an overview of the criteria used to 
specify the input vector for the dependent variable yt, the explanatory variable 
mapping temporal seasonal lengths xt and the binary variable for outlier mapping zt.  
 Although the simple approach of a seasonal naïve model MLPNAIVE 
demonstrated adequate accuracy on validation and test data, a visual inspection of the 
predictions showed unsatisfactory results of extrapolating only a simple sine pattern, 
without replication of the outliers or the shifting seasonality. However, in accordance 
with established practice in forecasting a naïve approach may serve as a parsimonious 
benchmark to compare potential improvements of more complex model forms. 
 



 yt 
Predictor
Variable 

xt 
Time 

Mapping

zt 
Outlier
Coding 

MSE
Train 

MSE
Valid 

MSE
Train 

&Valid

MSE 
Test 

MLPNAIVE t-51 - - 3.95 0.86 1.79 0.75
MLPBJ-1 BJ-1 - - 6.24 6.20 6.21 4.75
MLPBJ-2 BJ-2 - - 5.12 4.39 4.61 2.92
MLPFFT FFT - - 1.70 0.81 1.08 2.12
MLPTEMP - t+1 - 2.23 0.46 0.99 0.55
MLPTEMP-FFT-1 FFT t+1 - 1.38 0.68 0.89 0.86
MLPTEMP-FFT-2 - FFT - 1.53 0.64 0.97 0.72
MLPTEMP-FFT-3 FFT FFT - 1.60 0.70 0.91 3.92
MLPBIN-TEMP - t+1 t+1 1.32 0.43 0.70 0.52
MLPBIN-TEMP-FFT-1 FFT t+1 t+1 0.60 0.60 0.60 0.33
MLPBIN-TEMP-FFT-2 FFT FFT t+1 0.44 0.55 0.51 0.68
MLPBIN-TEMP-FFT-3 - FFT t+1 1.21 0.45 0.68 0.61
MLPBIN-TEMP-FFT-4 FFT FFT FFT 0.41 0.70 0.55 0.59

Table 2: MLP candidate inputs and MSE on training, validation and test set 

 Both MLPBJ-1 and MLPBJ-2 using the Box-Jenkins methodology for input vector 
specification failed to approximate the shifting seasonality or the anomalies in the 
training set. As a consequence, the provided only a smooth sine curve with 
dampening magnitude on the validation and test set, leading to higher MSE then the 
MLPNAIVE benchmark on all data subsets. Due to the nature of the varying seasonality, 
the specification of alternative lag structures did not increase accuracy either.  
 Similarly the MLPFFT using SA and FFT to identify potential multiple overlying 
seasonalities failed to generalize on the test set, although providing significantly 
better results in approximating the pattern in sample. as indicated by the lower in 
sample errors on training and validation set. Again, the MLP were unable to capture 
the anomalous observations and the shifting seasonal length across different 
initializations and topologies, justifying a different modeling approach in providing 
additional information on seasonal length through explanatory variables. 
 The MLPTEMP topologies using the temporal encoding xt as a causal variable in 
t+1 reduced MSE in sample and out of sample, supporting the importance of external 
coding of shifting seasonal lengths. The forecasts showed a repeating sine-pattern of 
varying seasonality, closely resembling the observed time series frequencies. 
However, the MLPTEMP failed to capture some subtle repetitive patterns that previous 
models using FFT lags had been able to approximate. In contrast, the MLPTEMP-FFT-1 
utilizing the lags identified from SA on the time series of the dependent variables {yt, 
yt-1, …, yt-8, yt-13, yt-16, …, yt-19, yt-21, yt-33, yt-34, yt-50} plus a temporal coding showed 
little error improvement in comparison to MLPTEMP. However, providing the FFT lags 
only on the temporal variable {xt, xt-1, …, xt-8, xt-13, xt-16, …, xt-19, xt-21, xt-33, xt-34, xt-50} 
for MLPTEMP-FFT-2 allowed a closer approximation of different periodicities and a 
significant increase in accuracy on the hold out data of the test set. 
 Despite reduced errors the seasonal anomaly observed in the time series could 
not be explained and negatively affected the accuracy of the approximation in sample. 
As only a single anomaly could be observed and no MLP model had shown the 
capability of approximating it as part of the data generating process, the lack of 
further evidence suggested an exclusion of these outliers from model building using a 
binary variable in addition to the previous models of temporal encoding and FFT lags. 
The the binary outlier variable in MLPBIN-TEMP enhanced the in sample approximation 



and reduced the training MSE significantly. In addition, it further reduced the errors 
on the validation and test set in comparison to the previous topology of MLPTEMP. A 
use of the dynamic FFT lags on the three variables y, x and z resulted in the selection 
of MLPBIN-TEMP-FFT-2 with the lowest composite error of in sample approximation and 
out of sample generalization for the final forecasts. Fig. 7 illustrates the models 
iterative t+1, … t+50 step ahead prediction of multiple overlaying 50 period ahead 
forecasts originating from each point of the time series. The graph shows that the 
MLP has adequately learned the pattern on training and validation set, including the 
abnormal seasonality coded as outliers, except the last seasonal pattern also possibly 
containing an outlier.  
 

 
Fig. 8: 50 periods forecasts originating from each point of the time series 

 The selected MLPBIN-TEMP-FFT-2 utilises the 16 lags identified by the FFT for the 
dependent variable yt, the explanatory variable of temporal coding xt and a single 
explanatory dummy variable to encode the outlier zt+1, constructing an input vector of 
37 variables. The MLP uses two hidden layers of 20 nodes each with a logistic 
activation function and a single output node with the identify function. The model is 
used to compute the final forecasts 50 steps ahead, as shown in fig. 8. 
 

 
Fig. 9: The time series is plotted with the forecasts 

 The final ex ante forecasts required the prediction of the temporal explanatory 
variable beyond the provided dataset. A decision upon the position of the minimum of 
the last observable season and the expected length of the next seasonal cycle outside 
the provided data was based upon the regularity in seasonal cycle length observed in 
fig. 4 and the ESTSP competition objectives. Hence the next seasonal cycle was 
expected to be 50 observations for the final ex ante forecasts. 
 

5. Conclusions 

We evaluate a number of conventional methodologies of visual inspection, 
autocorrelation analysis and spectral analysis to specify significant input variables for 
NN prediction on the ESTSP competition time series. Due to the particular nature of 



the series, containing a seasonal pattern with varying length and anomalous 
observations, the conventional approaches fail to specify adequate input variable lags.  
 To compensate for this we propose a dynamic causal modelling approach, 
coding the shifting seasonal cycle length and the outliers in explanatory variables, 
utilising the same temporal lag structure as identified in the original time series using 
spectral analysis. Although ACF & PACF analysis as well as SA fail to identify the 
input lags, they are frequently applied in NN modelling where they have a proven 
track record in identifying seasonal patterns of constant cycle length. Hence the 
results provided here should not be generalised beyond the single time series. In 
comparison, SA based upon FFT periodigrams demonstrate a better performance in 
extracting more information regarding periodic effects from this time series. 
However, this may again prove misleading for moving average processes which 
require identification in ACF-plots and subsequent modelling with recurrent NN. 
 Fur future research, a systematic evaluation of methodologies for input lag 
identification is required, extending the analysis to multiple time series, multiple time 
origins to increase generalisation and to unbiased error metrics, avoiding over 
penalisation of high deviations and outliers from squared error measures. 
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