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Abslraa - Various heuristic approaches have been proposed to 
limit design complexity and computing time in artificial neural 
network modelling and parameterisation for time series 
prediction, with no single approach demonstrating robust 
superiority on arbitrary datasets. In business forecasting 
competitions, simple methods robustly outperform complex 
methods and expert teams. To reflect this, we follow a simple 
neural network modelling approach, utilising linear 
autoregressive lags and an extensive enumeration of important 
modelling parameters, effectively modelling a miniature 
forecasting competition. Experimental predictions are 
computed for the CATS benchmark using a standard 
multilayer perceptron to predict 100 missing values in five 
datasets. 

I. INTRODUCTION 

Artificial neural networks (ANN) have found increasing 
consideration in forecasting theory, leading to successful 
applications in various forecasting domains, as well as time 
series and explanatory forecasting in corporate business [ 1- 
41. ANNs promise attractive features to business 
forecasting, being a data driven learning machine as 
opposed to conventional model-based approaches, 
permitting universal approximation [SI of arbitrary linear or 
nonlinear functions, and therefore offering great flexibility 
in learning the generator of noisy data from examples and 
generalising structure from it without a priori assumptions. 
However, the nontrivial task of modelling an ANN for a 
particular prediction problem is still considered to be as 
much an art as a science [6, 71, as the combination of 
choices may significantly impact on the networks ability to 
extrapolate results. Various heuristic modelling approaches 
have been proposed for the popular paradigm of multilayer 
perceptrons (MLPs) alone, suggesting alternative 
approaches to determine the architecture and guide the 
training process [6, 8-1 I ]  to assure robust minimization of 
the objective function. 

In business forecasting, a variety of methods from naNe 
to complex scientific methods have been developed and 
applied to minimize forecast errors on short, noisy time 
series with a low signal to noise ratio [12]. The competing 

models were evaluated in various time series competitions 
on different time series [13, 141, with simple methods 
surprisingly outperforming complex methods and statistical 
expert teams [15, 161. Therefore, we attempt to follow a 
simple business forecasting approach to predict artificial 
time series outside the business domain, in order to validate 
these findings relevant for operations research and business 
forecasting. 

Following, we employ a simple MLP approach to derive 
adequate time series predictions, exploiting the information 
derived kom a preliminary analysis of the linear 
autoregressive (U) components as in ARIMA modelling 
[ 1 I ]  for pre-processing and the selection of appropriate time 
lags for the input vector. As no heuristic has proven robust 
performance through valid and reliable results on arbitrary 
datasets, we exploit computational power available today 
and propose an extensive enumeration of the most important 
modelling parameters of network size and depth, activation 
functions, data sampling strategy, size of the data subsets, 
initialisation ranges and learning parameters for number of 
necessary initialisation5 while successively extending the 
input vector. Consequently, we model, train and compare a 
large variety of nonlinear AR-ANNs. The modelling and 
training of thousands of MLPs shifts the emphasis from 
determining sound heuristics to limit modelling complexity 
towards a valid and reliabie selection of a single superior 
model from a large population of competing models. 
Following, we employ a stepwise selection approach, 
effectively modelling a miniature forecasting competition 
motivated from the experience and publications in the 
domain ofbusiness forecasting [ 13, 161. 

Following a brief introduction to the use of MLPs in time 
series prediction, section 3 assesses the individual 
modelling and design decisions in MLP training in 
following a data mining modelling process. This is followed 
by our experimental results on the CATS benchmark in 
section 4. Conclusions are given in section 5.  
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11. MULTILAYER PERCEPTRONS FOR TIME SERIES 
PREDICTION 

Forecasting with non-recurrent ANNs may encompass 
prediction of a dependent variable ?from lagged 
realisations of the predictor variable y,.", one or i 
explanatory variables x, of metric, ordinal or nominal scale 
as well as lagged realisations thereof x~,,." . Therefore, 
ANNs offer large degrees of keedom towards the 
forecasting design, permitting explanatory or causal 
forecasting through estimation of a functional relationship 
of the form 

- ,  

..... . .. I 
1 i. 

Fig. I .  Autoregressive MLP application to timc scncs forccarting with a 
(44-1)-MLP, using n=4 input neu~ons for observations in 1, 1-1. 1-2, 7-3, 

four hiddcn units, one output neuron for timc period I + /  and hvo layers of 
20 trainable weights [22] Thc bias node is not displayed. 

as well as general transfer function models and univariate 
time series prediction. Considering the objective of the 
CATS benchmark we will give a brief introduction to 
modelling ANNs for time series prediction. For a general 
discussion readers are referred to [12, 17-21]. Forecasting 
time series with ANN is generally based on modelling the 
network in analogy to an non-linear autoregressive AR@) 
model [6, 8, 221. At a point in time 1, a one-step ahead 
forecast j,,, is computed using p=n observations 
y,,y,., , . . . ,y,.,+, from n preceding points in time f, I -I ,  t- 
2, ... ; t-n+l, with n denoting the number of input units of 
the ANN. This models a time series prediction of the form 

The architecture of a feed-fonvard MLP, one of the original 
and well researched ANN paradigms, of arhitraly topology 
is displayed in figure I .  For a t+n forecast of n steps ahead 
two approaches for MLP predictions are feasible. Either an 

iterative t+l forecast is computed using one output node, 
predicting future realisations in t+n Y n > f  based upon 
previous forecasts used as observations ~ , + ~ . r .  Altematively, 
a MLP may be trained to forecast t+l,t+2, ..., t+n values 
simultaneously, using a multiple-step-ahead forecasting 
architecture of n output units. 

Data is presented to the MLP as a sliding window over 
the time series observations. The task of the MLP is to 
model the underlying generator of the data during training, 
so that a valid forecast is made when the trained network is 
subsequently presented with a new value for the input 
vector [SI. Therefore the objective function used for ANN 
training determines the resulting system behaviour and 
performance. 

111. EXAUSTIVE MODELLING APPROACH FOR MULTILAYER 
PERCEPTRON APPLICATION 

A .  Experiment and Training Objective 

The objective of the Competition on Artificial Time Series 
(CATS) is to provide predictions with a minimum mean 
squared error (MSE) for 100 missing values in 5 subsets of 
a supplied dataset. The submitted methods will be ranked on 
the MSE computed on the missing values using 

with e: = (y, -9, determining the prediction objective and 
the objective function through the ex post evaluation 
measure (see 1I.D). It must be noted, that the MSE as all 
quadratic errors represents a biased error metric and 
objective function, penalizing errors of larger scale. 
Although the selection of appropriate, non quadratic error 
metrics has received large attention in business forecasting 
research [23], MSE error measures may be suitable if it 
represents the true objective of the problem domain, e.g. 
modelling filters in engineering domains where larger errors 
are unfavourable [24]. 

B. Data Analysis and Preprocessing 

The CATS benchmark is an artificial time series of 5,000 
observations with I00 values omitted for out of sample 
evaluation. The omitted observations are divided in 5 blocks 
of 20 observations: elements 981 to 1,000, 1981 to 2000, 
2981 to 3000, 3981 to 4000 and elements 4981 to 5000. 
Lacking information on the domain and structure of the 
time series no data cleansing regarding structural breaks, 
correction of outliers, pulses or level shiAs due to temporal 
extemal shocks etc. may be performed. In absence of a 
heuristic lag structure derived from the typical seasonality 
of a quarterly, monthly or weekly time series, we analyze 
the complete dataset as well as each individual set for linear 
autocorrelations in the integrated data. 
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-",.-_*rm_ asymptotic limits of the functions [4]. Various scaling 
methods allow linear equidistant scaling in a r b i t r v  
intervals [6] or statistical normalisation [9]. We select a 
simple normalisation 

I .  

(4) 
y ' -  JJ, , 
' ymaX + h  

.d 
Fig. 2. Panial autocorrelation function o f  first ordcr intcgraled Iimc scrics 

overall panialdataset d l ,  ..., d5 

Assuming the nature of an artificial time series, we expect 
to find an identical structural generator for the data hidden 
by noise in all independent samples of the CATS datasets. 
Detecting strong instationarity, we analyze the linear 
autocorrelation coefficients and the partial autocorrelation 
coefficients of the first order integrated time series, shown 
in fig. 2 and 3 respectively. Our analysis confirmed 
similarities in the linear lag-structure, with significant lags 
at t-3, t-4, 1-10. 1-11, 1-14 and t-16 in all datasets. In 
addition, we detected significant partial autocorrelations at 
/-I in three, and /-6, / - I2 and 1-18 in two datasets attributed 
to different impact of random noise without significant lags 
larger than /-I8 within the separate datasets. These lags 
were utilized for a stepwise extension of the input vector. 
Although these findings support an approach to join the 
datasets and train each single MLP on all data available, 
thereby reducing the adverse influence of noise and possibly 
deriving robust results in the individual sets we attempted to 
use local information of time series level and noise. 
Following, all analysis, training, evaluation and model 
selection is computed on the five distinct datasets. Based on 
our autoconelation analysis, first order differencing of the 
time series could reduce noise in the data structure, although 
there persists an ongoing discussion on the necessity of 
integrating time series data for nonlinear NN models, 
especially considering the reconstruction of multiplicative, 
nonlinear effects such as seasonality in full scope [25, 261. 
Following preliminary tests on a limited set of NN 
architectures we transform the input and output variables 
through first order integration of the complete data series, 
albeit loosing information on the scale of the observations 
in order to reduce noise, highlight important relationships 
and compact the distribution of the variables to assist the 
neural network in learning the relevant pattems [S, 221 

Subsequent to transformation, we normalize the 
integrated data in order to avoid computational problems, to 
meet algorithm requirements and to facilitate network 
learning and speeding up the training process 1271 in 
accordance with the selected nonlinear hyperbolic tangent 
(tanh) activation function to (-0.X;O.X) including headroom 
h to avoid saturation effects of observations close to the 

to scale the data symmetric to the origin to account for non- 
symmetric intervals of scale in positive and negative 
observations [28]. We assure homogeneous of all separated 
datasets through an external, along channel normalization of 
the complete time series [17]. 

C. Architecture Selection 

Designing a MLP architecture encompasses the dataset 
dependent decisions [6] on the number of hidden layers, the 
number of nodes in input, each hidden and output layers as 
well as the functional processing within ihe nodes through 
input, activation and output function [6]. 
The number of input nodes corresponds to number of 
lagged Observations in the input vector to discover the 
underlying pattern in the time series for future forecasts 
[ I  I]. There exist no dominant heuristic to determine the 
optimum number for an arbitrary dataset, although this issue 
is essential to the quality of the following model building 
process [6]. Too few nodes leave out relevant information 
from the exploitable information in the underlying linear 
and nonlinear autoregressive structure of the time series, 
while too many nodes may add noise to the input pattems. 
We employ a autoregressive modelling approach following 
Lattermacher and Fuller [28], exploiting the information 
derived from a preliminaly analysis of the linear 
autoregressive (AR) components as in ARlMA modelling 
[I71 to select the appropriate time lags for the input vector 
and consequently the input nodes. As a result, we model 
nonlinear AR-ANNs, distinct from a conventional Box- 
Jenkins ARIMA approach due lo nonlineanties in the AR- 
terms while omitting MA-terms. We commence model 
building with the linear AR-lags determined in the data 
analysis in five groups of increasing length, successively 
extending the input vector by including less relevant 
autocorrelation-lags until all past observations from lags I- 
I .  ..., t-18 are used. 

The number of output nodes is determined by the 
forecasting horizon of the time series forecasting problem. 
For forecasting horizons f+n,  with n > l ,  we may model an 
MLP using one output node to model iterative f+ l  step 
ahead forecasts, successively using predictions as inputs for 
subsequent forecasting horizons as in conventional ARlMA 
prediction. Alternatively, we may forecast / + I ,  ..., /+n 
values directly using n output nodes as proposed by [24, 
291. We evaluate both approaches in a preliminary 
evaluation, with the iterative /+I predictions routinely 
outperforming the multiple step ahead forecasts. As a 
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consequence, we limit our presented results to those from 
the iterative t+l  predictions. 
The number of hidden layers and corresponding hidden 
nodes in each layer is determined using an extensive 
approach, evaluating every combination of l= l ,  .... 3 hidden 
layers and n=I ,  .... 20,hidden neurons in steps of 2, limiting 
the models to pyramidal topologies with an equal or smaller 
number of nodes in successive layers and a maximum 
number of 20 nodes in total, leading to 54 different 
topologies. We consider only fully connected, non-recurrent 
feedfonvard architectures without shortcut connections. 

Information processing within nodes is set 
homogeneously throughout all experiments. For the 
processing functions we considered the summation as an 
input function, a linear output function and the hyperbolic 
tangent (tanh) as a nonlinear activation function in all 
hidden and output nodes, due to presumed advantages in 
error propagating behaviour [30]. The bias in each node is 
modelled as an on-node connected to all nodes in all hidden 
and output layers with trainable weights. 

D. Training Process 

Training a MLP is the task of adjusting the weights of the 
links wg behveen units j and their thresholds to minimize 
the error 6, between the actual and desired system 
behaviour [I61 using various training algorithms for 
supervised online-training. We apply a simple derivative of 
the standard backpropagation gradient descent algorithm, 
applying a stepwise reduction of learning rate without 
momentum term to assure robust minimization of the 
objective function. The objective function in ANN training 

determines the size attributed to each ~7~ the MLP outputs, 
and may therefore be interpreted as measuring the 
significance of an over-prediction or an under-prediction for 
each point in time t or pattern p .  The impact of selecting an 
appropriate objective function according to the learning 
problem and the ex post measure has received limited 
attention in the business forecasting domain [31]. As 
different error measures imply different error weights to 
deviations of the predicted values to the observations, a 
MLP should be trained, selected and evaluated on its ability 
to adhere to the objective [30]. As the objective function 
should reflect the design goal of the competition, we 
minimize the MSE. For one output node the MSE equals the 
popular sum of squared error (SSE) objective h c t i o n  as 
proposed by Rumelhart, Hinton and Williams [19,20]: 

The use of the modified SSE in hetero-associative MLP 
training parallels statistical regression problems, modelling 
the conditional distribution for normally distributed output 

variables. Io time series point prediction, the single network 
output o p  corresponds to the forecast j ,  of a network, the 
teaching input l P  represents the actual value of the 
observation y ,  and the forecast error e, represents the 
networks error 6, in the output-layer. 

We apply various variants of different leaming rates and 
cooling rates, with four variants of learning rates between 
q=0.05, ..., 0.45 in steps of 0.2 and three variants of 
stepwise reductions of CiJ = 0.980,0.990,0.995 per epoch, 
deriving a variety of 9 alternative learning schemes. Each 
network topology is trained for up to 600.000 iterations, 
with the weight configuration causing the lowest MSE on 
the validation set saved for future use. To reduce 
computation time, we apply an early stopping paradigm, 
evaluating the relative reduction of the network error in 
percent after every epoch to a 0% threshold in 15 epochs. 
To account for random initialisation of the connection 
weights, we initialise each MLP IO times prior to training. 
We apply three different initialisation ranges of 
[-0.33; 0.331, [-0.66,0.66] and [-0.99; 0.991. No pruning or 
growing heuristics were applied. 

Due to changing input vector sizes the overall number of 
patterns in the dataset varies. We divide the dataset into 
three distinct sub-samples of training set to parameterize the 
trainable weights, a validation to guide early stopping and 
prevent overfitting and a test set to evaluate generalization 
on a hold-out set. Three different suhsample ratios were 
drawn, using a split of [60%,40%], [70%,30%] and 
[SO%, 20%], omitting the generalization set for final 
training due to the high correlation of the structure between 
suhsamples of the datasets. Each data pattem is drawn 
randomly from the sample sets until all patterns are used to 
complete an epoch. 

E. Model Evaluation and Selection 

Following the training of various architectures, a 
presumably optimum model must be selected from all 
available models for the final prediction. In accordance with 
the objective function and fmal evaluation criteria of MSE, 
we select the model with the lowest MSE on the validation 
data set. It must be noted, that the naYve selection of the 
network model with the lowest validation error does not 
seem to guarantee robust results. Therefore we followed a 
stepwise approach by analysing the mean errors of each 
parameter variant of sampling strategy, initialisation range 
etc. and iteratively selecting the ANN model group with the 
lowest Median of all MSEs on the validation dataset. 
However, the noise in results of the best MLPs sorted by 
validation error suggests that a pure selection based upon 
validation error is questionable to assure a valid and reliable 
model selection. Therefore, future research should consider 
the development of sound selection methods instead of 
additional heuristic guidelines for network modelling. 

To evaluate our selection process in the lack of 
generalisation data for the CATS competition, we analyze 
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the autocorrelation structure of the iterative predictions for 
each dataset. Despite the low signal to noise ratio on a 
sample size of 20 forecasts, we would anticipate a similar 
autoregressive pattem in the predictions, which was not 
always evident. As the true observations of the competition 
are not available at the time of writing, we anticipate a 
limited accuracy of our predictions, further highlighting the 
problem of robust model selection. 

1v. SIMULATION RESULTS OF EXHAUSTIVE MODELLING 
ON THE CATS BENCHMARK 

A .  Selected MLP Architecture 

We train and evaluate a total of 43740 different MLPs for 
each input lag-structure and t+l forecasts. Total 
computation time was appx. 10 days on a Pentium lV, 2400 
MHz, ICB RAM, with an average time of 4 seconds for 
network training and saving of the results. To automate this 
extensive design and model selection process we apply 
NeurLab, a prototype simulator for ANN time series 
experiments developed specifically for extensive time series 
predictions within our research group. Table I gives an 
overview. 

TABLE I 
ARCHITECTURES EVALUATED FOR MODEL SELECTION 

ARCHITECTURE EVALUATED PARAMETERS 
Input Nodes I Lag StrucNrc 3,4,10,11.14,16 

1,3,4,10.11,14,16,18 
1,3,4.5,6.9,10,11,12,14,16.18 

1,2,3,4,56,9,10,11.12,14,16,18 
1, ..., 18 

hiddcn laycr I: I, ..., 20 
hiddcnlayer I + 2 S U M  I ,  .... 20 

hiddcnlavm1+2+3:SUM I, ..., 20 
I (itcrativc t+1 prediction) 

20(t+1, ..., t+20prediction) 

Hidden Nodcs 

Output Nodcs 

Activation Function TanH 
TRAINING PROCESS 
Iterations 600000 

Of all evaluated architectures, we selected a 12-8-1 
architecture named BlSLAB.a, using the lags 
1-1 ... 6.9 ... 12,14,16,18 for input nodes. The MLP was 
trained for 60000 iterations using a starting learning rate of 
0.05 being reduced by a cooling factor of 0.995 (0.5%) 
every epoch, with early stopping after 15 evaluation cycles 
with no relative improvement of the MSE after every epoch 
on the validation data. The dataset was split into 70% 
training data and 30% validation data to train the found 

MLP architecture to generate the final forecasts. The 
architecture was found on dataset 1 and successively trained 
and applied to all datasets. 

B. Simslotion Results 

Following, we present the numerical and selected graphical 
predictions of the chosen MLP-model for the datasets of the 
CATS competition. 

PndlcUon of CATS dillaset 1 . I 

Prediction of CATS dataset 4 

Graphic evaluations of time series graphs do not necessarily 
reveal the performance of a predictor, especially 
considering the unknown level of noise in the time series. 
However, a 'sanity check' of the level and signal to noise 
ratio of the predicted values suggests a medium forecasting 
performance, especially for datasets 2 and 3. 

Table 2 displays the numerical predictions of the trained 
model on all datasets, rounded to two decimals. The actual 
predictions are submitted in full numerical detail. 
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V. CONCLUSION 

benchmark applying an extensive 
approach motivated by business 

forecasting competitions. The limitations of an extensive 
approach of long computational time and the need to fully 
automate the complete training, evaluation, selection and 
forecasting process Of thousands Of networks are no longer 
dominant through available computational power. However, 
the training of thousands of neural network architectures 
shiAs the emphasis in neural network modelling from 

towards the problem of a valid and reliable selection 
criterion to determine superior network topologies. Future 
research is needed to derive sound selection rules exce&jing 
a naTve pick-best on a single error measure. 

However, the actual performance of our approach may 
only he evaluated by the accuracy of our predictions in this 
and future forecasting competitions. 
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