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Abstract— Support Vector Regression (SVR) and Neural 
Networks (NN) have been successfully applied to forecasting 
and time series prediction. While conventional statistical 
methods require specific data preprocessing prior to the 
forecasting step both, SVR as well as NN need less efforts for 
the respective tasks due to their theoretical properties.  On 
the other hand, it is known that preprocessing affects 
performance of classifiers built using these methods. In this 
paper we analyze how preprocessing affects the forecasting 
performance using SVR and NN and provide detailed 
insights applying several preprocessing strategies to 
different artificial time series. There is evidence to prefer 
linear scaling into the interval [-0.5,0.5] among the analyzed 
strategies. Future work is proposed in order to validate our 
findings and extend the experiments to alternative 
preprocessing strategies.  

I. INTRODUCTION 
upport vector regression (SVR) and artificial neural 
networks (NN) have found increasing consideration 

in forecasting theory, leading to applications in time 
series prediction and explanatory forecasting in various 
domains, including business and management science 
[1, 2]. In specific cases, these Computational Intelligence 
methods could show their advantages outperforming 
conventional statistical approaches such as ARIMA and 
exponential smoothing; see e.g. [3, 26].  
 

Despite their theoretical capabilities and successful 
applications, NN as well as SVR are not yet established 
forecasting methods in business practice. Recently, 
substantial theoretical criticism towards NN has raised 
doubts as to their ability to forecast even simple time 
series patterns of seasonality or trends without adequate 
data preprocessing [3]. NN and SVR offer many degrees 
of freedom in the modelling process through the selection 
of activation or kernel functions and their parameters etc. 
as well as the stages preceding the model building 
through alternative forms of preprocessing. It has been 
shown that data preprocessing is a crucial step in many 
data mining applications where data cleansing and 
transformation are applied in order to improve the 
respective results; see e.g. [25]. Consequently, NN and 
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Support Vector Machines (SVM) must be considered 
sensitive to scale and magnitude of the presented data and 
therefore to the form of data preprocessing. 
Consequently, well-defined methodologies including 
appropriate preprocessing strategies have been developed 
and applied for clustering [20, 21, 23] and classification 
tasks [11, 28]. For example, Graf et al. show that the type 
of preprocessing is an important issue in clustering; see 
e.g. [23], where 7 different preprocessing strategies have 
been evaluated, obtaining that linear scaling in the 
interval [0;1] is one of the two strategies which lead to the 
most relevant improvements in the cluster structures 
found. Crone et al. analyse the importance of different 
forms of data preprocessing on classification accuracy 
and conclude that preprocessing choices have a stronger 
impact on accuracy then model building or 
parameterization of NN, SVM and decision trees [27].  

 
Therefore a structured evaluation of the impact of data 

pre-processing on the accuracy of methods from 
computational intelligence is also required for 
applications in regression tasks of time series forecasting. 
This paper contributes to the mentioned problems, 
presenting an analysis of different preprocessing 
strategies in the form of an empirical simulation 
experiment of different artificial, archetypical time series. 
More specifically, we evaluate normalization and linear 
scaling applied to various time series. Our findings 
provide insights on usability and limitations of the 
strategies analyzed.  

 
This paper is organized as follows. First, we briefly 

introduce SVR and NN for the context of time series 
forecasting. Section III presents the experimental design 
and the results obtained. Finally, we provide conclusions 
and future work in section IV. 

 

II. MODELLING SVR AND NN FOR FORECASTING  

A. Support Vector Regression 
We briefly describe the standard Support Vector 

Regression (SVR) algorithm, which uses the ε-insensitive 
loss function, proposed by Vapnik [5]. This function 
allows a tolerance degree to errors not greater than ε. The 
description is based on the terminology used in [6, 7]. Let 
{(x1,y1),….., (xℓ,yℓ)}, where xi є Rn and yi є R, be the 
training data points available to build a regression model. 
The SVR algorithm applies a transformation function Φ 
to the original data points from the initial Input Space, to 
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a generally higher-dimensional Feature Space F. In this 
new space, we construct a linear model, which 
corresponds to a non-linear model in the original space: 

FwFR n ∈→Φ ,:  (1)  

bxwxf +Φ= )(,)(   (2)  

The goal when using the ε-insensitive loss function is 
to find a function that fits current training data with a 
deviation less or equal to ε, and at the same time is as flat 
as possible. This means that one seeks for a small weight 
vector w; one way to do that is e.g. by minimizing the 
quadratic norm of the vector w [6]. As this problem could 
be infeasible, slack variables ξi, ξi* are introduced to 
allow error levels greater than ε, arriving to the 
formulation proposed in [5]:  
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This is known as the primal problem of the SVR 
algorithm. The objective function takes into account 
generalization ability and accuracy in the training set, and 
embodies the structural risk minimization principle [8]. 
Parameter C measures the trade-off between 
generalization ability and accuracy in the training data, 
and parameter ε defines the degree of tolerance to errors. 
To solve the problem stated above, it is more convenient 
to represent the problem in its dual form. For this 
purpose, a Lagrange function is constructed, and in 
applying saddle point conditions it can be shown that the 
following solution is obtained [8]: 
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Here, αi and αi
* are the dual variables, and the 

expression K(xi,x) represents the inner product between 
Φ(xi) and Φ(x), which is known as the kernel function 
[8]. The existence of such a function allows us to obtain a 
solution for the original regression problem, without 
considering explicitly the transformation Φ(x) applied to 
the data. In our experiments we use RBF and linear kernel 
functions.  

 
It is well known that when dealing with SVM in 

classification problems, normalizing input data can 
heavily influence on the respective results [22]. As stated 
in [18], normalization is required for particular kernels 

due to their restrictive domain (e.g. B splines), and can 
also be helpful for unrestricted kernels, avoiding 
problems with the Hessian in the optimization problem. 
In [19] it has been shown that the type of normalization 
carried out has an important influence in SVM model 
performance in the case of classification; moreover, it has 
been suggested to normalize data in the feature space (not 
the input space) when training a SVM. In the same sense, 
[21, 22] point out that the application of normalization 
techniques in the input space may cause scale problems in 
the feature space; to deal with this problem, they propose 
normalizing the kernel function instead of normalizing 
the original input vectors (in the case of monomial 
kernels both strategies are equivalent), which leads to a 
modified SVM algorithm. By using this novel 
normalization strategy they outperformed a traditional 
normalization procedure in some pattern recognition 
problems. Some experiments have shown that the use of 
polynomial kernels functions without normalization, 
could lead to overfitting problems when the degree of the 
function is too large [5]. Finally, [24] suggest to conduct 
simple scaling on the data to the interval [0,1] or [-1,1] as 
a previous step when using SVM for classification. 
However, little information is published on the effects of 
preprocessing on the performance of SVR in regression 
tasks. 

 

B. Neural Networks 
Forecasting with non-recurrent NNs requires the 

prediction of a dependent variable from lagged 
realizations of the predictor variable, explanatory 
variables of metric, ordinal or nominal scale and/or 
lagged realizations thereof. Therefore, NNs offer many 
degrees of freedom in the forecasting design, permitting 
explanatory or causal forecasting through estimation of a 
functional relationship, as well as general transfer 
function models and simple time series prediction. Next, 
we analyze briefly the degrees of freedom in modelling 
artificial NNs for time series prediction; a general 
discussion is given in [11, 13]. 

 
Forecasting time series with NN is frequently modelled 

in analogy to a non-linear autoregressive AR(p) model 
[2, 14]. At a point in time t, a one-step ahead forecast is 
computed using p=n observations   from n preceding 
points in time t, t-1, t-2, …, t-n+1, with n denoting the 
number of input units of the NN. This models a time 
series prediction as of  

( )1 1 1ˆ , ,...,t t t t ny f y y y+ − − +=   (6) 

Data is presented to the MLP as a sliding window over 
the time series observations. The task of the MLP is to 
model the underlying generator of the data during 
training, so that a valid forecast is made when the trained 
NN network is subsequently presented with a new input 
vector value. The general architecture of a feed-forward 
Multilayer Perceptron (MLP) is displayed in figure 1.  
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Fig. 1.  Autoregressive MLP application to time series forecasting using 
n input neurons for observations in t, t-1, t-2, …, t-n-1, m hidden units, h 
output units for time periods t+1, t+2, …, t+h and two layers of 
trainable weights. The bias node is not displayed. 

 
The network paradigm of MLP offers extensive 

degrees of freedom in modelling for prediction tasks. 
Structuring the degrees of freedom, each expert must 
decide upon the selection and sampling of datasets, the 
degrees of data preprocessing, the static architectural 
properties, the signal processing within nodes and the 
learning algorithm in order to achieve the design goal, 
characterized through the objective function or error 
function. For a detailed discussion of these issues and the 
ability of NN to forecast univariate time series, the reader 
is referred to [2]. 

 
Data preprocessing of the input vector is considered a 

mandatry requirement for the application of MLPs 
[28, 29]. As the sigmoid activation functions in the 
hidden nodes are only defined in the interval of ]-1, 1[ for 
the hyperbolic tangent or ]0, 1[ for the logistic function, 
input data must be scaled to facilitate learning [12]. Tang 
and Fishwick recommend linear scaling data in to smaller 
intervals, e.g. [0.2, 0.8], to avoid saturation effects at the 
asymptoic bounds of the activation functions [30]. 
Consequently, alternative scalings will be considered in 
our evaluation. 

 

III. EXPERIMENTAL DESIGN  AND RESULTS 

A. Description of the Artificial Time Series 
We evaluate a set of five artificial time series of 

monthly retail sales motivated from Pegel’s original 
classification, later extended by Gardner to incorporate 
degressive trends. Time series are composed of regular 
patterns of different forms of linear, progressive, 
degressive or regressive trends T, additively or 
multiplicatively combined with seasonality S, a constant 
level L and residual noise E. In addition, empirical time 
series are impacted by irregular patterns such as level 
shifts and pulses, which are disregarded in this paper. To 
evaluate the ability of different computational intelligence 

methods we create a set of benchmark time series for the 
most common time series patterns: linear trend and 
different forms of seasonality. Consequently, we create 
individual time series patterns and combine them 
accordingly, overlaying each with additive noise.  

As an increasing seasonality along time to reflect a 
multiplicative seasonality L*SM+E seemed of little 
empirical relevance in the absence of level changes, it 
was omitted from further analysis.  
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Fig. 2.  Basic time series patterns of artificial time series according to the 
Pegels- and Gardner-classification, combining Level, Trend and 
Seasonality with a medium additive noise level. 

 
Consequently, we create a set of five time series 

including a stationary time series L+E (E), seasonality 
without trend L+SA+E (SA), linear trend L+TL+E (TL), 
linear trend with additive seasonality L+TL+SA+E (TLSA) 
and linear trend with multiplicative seasonality depending 
on the level of the time series L+TL*SM+E (TLSM). The 
residual error term follows a Gaussian distribution N(0,σ2) 
applying a moderate level of noise σ2=25. The original 
time series data was taken from the experiments 
performed in [3] and represent monthly retail sales. All 
time series consider additive noise terms to allow an 
estimation of final forecasting accuracy in relation to the 
original noise level. Each time series consists of 228 
observations. 

 

B. Experimental Design 
To scale time series data into adequate intervals for NN 
and SVR, both linear scaling and normalization, can be 
applied. Linear scaling transforms the observations into a 
predefined interval, e.g. [0, 1], [-1, 1], scaling the data 
into an arbitrary interval defined by a lower bound lb and 
an upper bound ub, [lb, ub]. The observations Xi of a 
variable X are transformed according to: 
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However, linear scaling is sensitive to extreme values and 
outliers, as the observations may be dominated by a single 
large value. As an alternative to linear scaling, 
normalization, also known as z-score normalization, zero-
mean normalization or standardisation is a scaling 



 
 

 

procedure based on the mean and the standard deviation 
(SD) of a variable. Given a variable X, the following 
transformation is applied to each observation Xi: 

( )
( )

i
i

X mean XZ
SD X
−

=  (7) 

After scaling, all variables follow a normal distribution 
with zero mean. However, observations scaled using a 
normalization procedure will not fall within the interval 
of [-1, 1] depending on the distribution of the 
observations.  
 

Both, normalization and linear scaling procedures 
involve aggregated calculations (mean, maximum, etc) 
based only on in-sample data, i.e. training and validation 
sets; test set data points are not taken into account to 
calculate such measures, which implies that in linear 
scaling these data points could lay out of the bounds of 
the [lb, ub] interval once they are transformed. Once the 
predictive model is developed using scaled data, inverse 
transformation are carried out to obtain final predictions. 

 
In this paper we examine 3 different preprocessing 

strategies: linear scaling into [-0.5, 0.5] and [-1, 1] 
intervals, and normalization. SVR using linear, 
polynomial and RBF kernel functions, and MLPs were 
evaluated for the 5 time series described above. For each 
series, we defined a lag structure including the 13 
previous observations as attributes for predicting next 
series value (one period ahead prediction); thus, a total of 
215 remaining data points are available to build models. 
Data were sequentially divided into training, validation 
and test sets using 119, 48 and 48 observations 
respectively; training data is used to build the model, 
validation data for parameter selection purposes, and test 
data to evaluate the accuracy on a hold-out data set, all 
models are parameterized using only training and 
validation data, withholding all information in the test set 
to assure valid ex ante testing.  

 
As mentioned in section 2.1., SVR models require 

setting of two parameters: C and ε. In addition, one needs 
to select an appropriate kernel function to carry out the 
transformation to a higher dimensional feature space. 
RBF kernel function, which is the kernel function most 
widely utilized for regression (see e.g. [6, 15, 17]), need a 
definition for an additional parameter σ. Our approach for 
RBF SVR parameter selection can be summarized as 
follows: first, we look for ‘a good’ value for the RBF 
kernel parameter (σ), fixing C and ε parameters by using 
the empirical rules proposed by Cherkassky and Ma [15], 
and evaluating 45 different alternatives for σ. The value 
of σ which generates the model with the lowest mean 
absolute error (MAE) in the validation set is defined as 
the base parameter for the kernel function. After that, we 
perform grid search to get the final parameters (σ, C and 
ε) of the model. The scheme for Linear SVR is very 
similar, but without considering parameter σ. Similarly, 

for Poly SVR we set the degree equal to 2 and apply the 
same scheme.  

 
For NN models, we used the backpropagation 

algorithm to construct multi- layer perceptron networks. 
Models were initialized 20 times using an (13-8-1) 
architecture comprised of 13 input nodes, 8 hidden nodes 
and a single output node for t+1 predictions, applying a 
sigmoid transfer function between the input and hidden 
layers, and a linear function between hidden and output 
layers. As for SVR models, we selected the network with 
the lowest mean absolute error (MAE) on the validation 
set to calculate the test error results. For more details the 
reader is referred to [16]. 

 

C. Experimental Results and Discussion 
Experimental results compare the test set errors of the 

five time series for the 3 preprocessing strategies cited 
above across MLP and 3 different SVR kernels, displayed 
in Table I. Errors are calculated as mean absolute error 
(MAE), and mean absolute percentage error (MAPE) on 
the test sets for different SVR kernels are displayed in 
table I. Linear scaling into [-0.5, 0.5] and [-1, 1] intervals 
is denoted by S(0.5) and S(1) respectively, while 
normalization is denoted by Norm. 

 
In analysing the mean and median of the errors of each 

forecasting technique, it is apparent that normalization is 
the least accurate scaling alternative across all methods. 
The results are consistent across all time series except the 
stationary time series E lacking dominant patterns. The 
underperformance of Norm is strongest for the methods 
of MLP and Poly SVR. In contrasts, Linear SVR and 
RBF SVR show only little impact of the preprocessing 
alternatives, with Norm performing similar to linear 
scaling, although most of the time linear scaling provides 
the lowest error. In contrast, S(0.5) robustly outperforms 
all other scaling approaches across all methods. In 
comparing the effect of scaling on the two methods with 
the lowest mean and median errors, MLP and linear SVR, 
using the alternative lower and upper bounds for linear 
scaling avoids saturation effects caused by instationary 
time series with seasonal, trended and trend-seasonal 
patterns and results in increased forecasting accuracy.  

 
These findings are confirmed by ranking each 

preprocessing strategy according to the number of times 
in which it provides the lowest-test set error. We obtain 
that linear scaling into [-0.5, 0.5] interval provides a 
better alternative in comparison to the other strategies, 
since it leads to the lowest MAE 13 of 15 times and to the 
lowest MAPE 14 of 15 times, while S(1) has the lowest 
MAE in 6 cases and the lowest MAPE 8 times, and Norm 
strategy is the best alternative 3 times considering MAE 
and 6 times considering MAPE (even cases were 
considered in the counting). 

 
 



 
 

 

 
 

 

TABLE I 
FORECASTING ACCURACY ON THE TEST SET FOR MLP AND DIFFERENT SVR KERNELS 

MAE MLP Linear SVR Poly SVR RBF SVR 
Series S(0.5) S(1) Norm S(0.5) S(1) Norm S(0.5) (1) Norm S(0.5) S(1) Norm
E 3.857 3.833 3.833 4.108 4.380 4.441 4.261 5.654 10.14 3.776 3.776 3.779
AS 4.807 4.211 16.625 5.637 5.690 5.752 4.104 5.863 8.918 3.739 3.726 3.831
TL 6.639 10.822 10.801 4.811 5.234 5.644 6.603 7.095 10.32 10.41 10.41 9.840
TLSA 5.743 5.771 13.419 6.280 6.262 6.251 7.857 10.01 17.82 17.68 16.34 16.66
TLSM 6.017 7.233 22.223 6.305 6.359 6.469 11.62 11.27 15.80 10.84 12.10 16.62
Mean 5.413 6.374 13.380 5.428 5.585 5.711 6.889 7.978 12.600 9.289 9.270 10.146
Median 5.743 5.771 13.419 5.637 5.690 5.752 6.603 7.095 10.320 10.410 10.410 9.840
MAPE MLP Linear SVR Poly SVR RBF SVR 

 S(0.5) S(1) Norm S(0.5) S(1) Norm S(0.5) S(1) Norm S(0.5) S(1) Norm
E 148.3% 117.0% 113.2% 149.6% 179.9% 188.5% 179.6% 369.5% 749.3% 138.7% 138.7% 137.9%
AS 4.8% 4.2% 13.9% 5.8% 5.8% 5.9% 4.1% 6.0% 9.3% 3.9% 3.9% 3.9%
TL 2.8% 4.7% 3.4% 2.1% 2.3% 2.5% 2.9% 3.2% 4.6% 4.6% 4.6% 4.3%
TLSA 2.6% 2.6% 6.0% 2.8% 2.8% 2.8% 3.6% 4.4% 8.1% 7.5% 6.9% 6.9%
TLSM 2.7% 3.3% 9.4% 2.9% 2.9% 3.0% 5.4% 5.3% 7.4% 4.3% 4.8% 6.6%
Mean 32.2% 26.4% 29.2% 32.6% 38.7% 40.5% 39.1% 77.7% 155.7% 31.8% 31.8% 31.9%
Median 2.8% 4.2% 9.4% 2.9% 2.9% 3.0% 4.1% 5.3% 8.1% 4.6% 4.8% 6.6%
 

As should be expected, different error measures 
identify different methods as superior. The high MAPE 
values for the stationary time series E are due to variation 
of the errors in relation to the mean value of 1, in contrast 
to larger means for the other series. To limit biases in the 
absence of a true objective function which could motivate 
the use of a particular error measure, we assume equal 
weight to each error and focus our conclusions on the 
MAE.  

 
To confirm the results suggested above from a 

statistical point of view, we performed a paired-samples t-
test on the MAE errors over the test set data points: for 
each method, we compared each preprocessing strategy 
against each of the others. The paired-samples t-test 
results show that differences in MAE for different 
preprocessing strategies are statistically significant at a 
95% confidence level for 11 of the 12 total cases; the 
exception is S(0.5) against S(1) for RBF SVR method 
(t=0.208; df=239; p=0.836). Thus, we can confirm that 
the preprocessing choices play an important role in 
developing time series forecasting models for all methods 
of MLPs and SVR, with less sensitivity of RBF SVR. 
Although Linear SVR generally shows an impact of the 
choice of scaling, an analysis of the individual time series 
reveals significant differences only for the time series E 
and TL, but not the others. Similarly, the performance of 
the MLPs show no significant impact of scaling on the 
stationary time series E but on all others. 

 
Our results suggest that MLP and Poly SVR are the 

most sensitive techniques regarding the preprocessing 
approach applied, whereas RBF and linear SVR show 
only little impact of the chosen scaling procedure. As 
RBF and linear SVR demonstrate lower sensitivity to 
preprocessing choices, they may prove to be more robust 
to suboptimal expert decisions in the iterative modelling 

process. This would explain the consistent and positive 
performance of SVR in recent model comparisons. In 
contrast, this sensitivity can provide an explanation to the 
arbitrary dominance of one method over another in 
empirical evaluations of NN vs. SVR, caused in part by 
the use of different preprocessing techniques prior to the 
experiments. 
 

Although it was not the primary objective of this 
evaluation, both MLP and SVR are verify their capability 
of modelling all 5 time series patterns accurately and 
robustly using a single, standardised preprocessing 
technique and the procedural modelling approaches. MLP 
and Linear SVR significantly outperform other methods 
of Poly SVR and RBF SVR, with differences between the 
best methods MLP and Linear SVR being not statistical 
significant. This appears to be particularly noteworthy, as 
many SVR applications limit their analysis to the 
evaluation of RBF kernel functions, which are less 
sensitive to preprocessing decisions but robustly provide 
suboptimal forecasting accuracy. 

 

IV. CONCLUSION 
We have examined the influence of 3 different 

preprocessing strategies on the predictive accuracy 
obtained using Linear SVR, Poly SVR, RBF SVR and 
MLP models for time series prediction: linear scaling into 
[-0.5, 0.5] and [-1, 1] intervals, and normalization. 
Results obtained by analyzing 5 different time series 
patterns provide interesting findings. First, results 
obtained using different preprocessing strategies for 
predicting time series are statistically different in most of 
the cases, which confirm that preprocessing through 
different scaling has a significant effect on SVR and NN 
performance in time series forecasting. Secondly, 
between the strategies analyzed in this work, there is 



 
 

 

some evidence to prefer linear scaling into the interval [-
0.5,0.5] instead of the two others. Third, differences in 
predictive accuracy between linear scaling into different 
intervals are not as large as those obtained when 
comparing any of them to normalization. Finally, 
differences in accuracy caused by different scaling 
strategies are greater for Poly SVR and MLP models than 
for RBF SVR and Linear SVR models. This reflects a 
varying sensitivity to scaling methods and consequently 
to decisions in the modelling process. 

 
Furthermore, our results verify that SVR with 

polynomial kernels and SVR with RBF kernels can be 
easily outperformed by using linear kernels. Also SVR 
with linear kernels show comparative accuracy to 
feedforward NN across all artificial time series patterns, 
with MLPs slightly outperforming SVR on all patterns. 

 
In future work, we want to extend the set of time series 

analyzed in this paper to validate our results; also, it 
would be interesting to consider alternative preprocessing 
strategies like linear scaling into other intervals exceeding 
the range of the NN activation functions similarly to 
normalisation. More importantly, we seek to extend the 
experimental design towards an empirical evaluation of 
multiple hypotheses, applying robust error measures of 
GMRAE, percent better etc., multiple time series origins 
to retrain the methods and multiple forecasting horizons 
in the rolling evaluation to derive more robust, valid and 
reliable results. Therefore, we ultimately seek to develop 
a robust and proven methodology of preprocessing for 
NN and SVR and guidance on pre-eminent modelling 
choices. 
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