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Abstract. Recently, novel learning algorithms such as Support Vector 
Regression (SVR) and Neural Networks (NN) have received increasing 
attention in forecasting and time series prediction, offering attractive 
theoretical properties and successful applications in several real world problem 
domains. Commonly, time series are composed of the combination of regular 
and irregular patterns such as trends and cycles, seasonal variations, level 
shifts, outliers or pulses and structural breaks, among others. Conventional 
parametric statistical methods are capable of forecasting a particular 
combination of patterns through ex ante selection of an adequate model form 
and specific data preprocessing. Thus, the capability of semi-parametric 
methods from computational intelligence to predict basic time series patterns 
without model selection and preprocessing is of particular relevance in 
evaluating their contribution to forecasting. This paper proposes an empirical 
comparison between NN and SVR models using radial basis function (RBF) 
and linear kernel functions, by analyzing their predictive power on five 
artificial time series: stationary, additive seasonality, linear trend, linear trend 
with additive seasonality, and linear trend with multiplicative seasonality. 
Results obtained show that RBF SVR models have problems in extrapolating 
trends, while NN and linear SVR models without data preprocessing provide 
robust accuracy across all patterns and clearly outperform the commonly used 
RBF SVR on trended time series.  

1 Introduction  

Support Vector Regression (SVR) and Artificial Neural Networks (NN) have found 
increasing consideration in forecasting theory, leading to successful applications in 
time series and explanatory forecasting in various domains, including business and 
management science [1, 2]. Methods form computational intelligence promise 
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attractive features to business forecasting, being data driven, semi-parametric 
learning machines, permitting universal approximation of arbitrary linear or 
nonlinear functions from examples without a priori assumptions on the model 
structure, often outperforming conventional statistical approaches of ARIMA- or 
exponential smoothing- methods. 
 

Despite their theoretical capabilities, NN as SVR are not established forecasting 
methods in business practice. Recently, substantial theoretical criticism of NN has 
raised skepticism regarding their ability to forecast even simple time series patterns 
of seasonality or trends without prior data preprocessing [3]. While all novel 
methods must ultimately be evaluated in an objective experiment using a number of 
empirical time series, adequate error measures and multiple origins of evaluation [4], 
the fundamental questions to their ability to approximate and generalize basic time 
series patterns must be evaluated beforehand. Time series can generally be 
characterized by the combination of basic regular patterns: level, trend, season and 
residual errors. For trend, a variety of linear, progressive, degressive and regressive 
patterns are feasible. For seasonality, an additive or multiplicative combination with 
level and trend further determines the shape of the final time series. Consequently, 
we evaluate SVR and NN on a set of artificially created time series derived from 
previous publications. We evaluate the comparative forecasting accuracy of each 
method to reflect their ability of learning and forecasting fundamental time series 
patterns relevant to empirical forecasting tasks. 

 
This paper is organized as follows. First, we provide a brief introduction to SVR 

and NN in forecasting time series of observations. Section three presents the 
artificially generated time series and the experimental design. This is followed by the 
experimental results and their discussion. Conclusions are given in section 4. 

2 Modelling SVR and NN for Time Series Prediction 

2.1 Support Vector Regression 

We apply the common Support Vector Regression (SVR) algorithm as proposed by 
Vapnik [5], which uses an ε-insensitive loss function for predictive regression 
problems. This function allows a tolerance degree to errors not greater than ε. The 
description is based on the terminology used in [6, 7]. Let {(x1,y1),….., (xℓ,yℓ)}, 
where xi є Rn and yi є R, be the training data points available to build a regression 
model. The SVR algorithm applies a transformation function Φ to the original data 
points from the initial Input Space, to a higher-dimensional Feature Space F. In this 
new space, we construct a linear model, which corresponds to a non-linear model in 
the original space1: 

 
1 When Φ is the identity function, the Feature Space is equivalent to the Input Space, and the 

model constructed is linear in the original space. 
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The goal when using the ε-insensitive loss function is to find a function that fits 
current training data with a deviation less or equal to ε, and at the same time is as flat 
as possible. This means that one seeks for a small weight vector w; one way to do 
that is e.g. by minimizing the quadratic norm of the vector w [6]. As this problem 
could be infeasible, slack variables ξi, ξi* are introduced to allow error levels greater 
than ε, arriving to the formulation proposed in [5]: 
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This is known as the primal problem of the SVR algorithm. The objective 
function takes into account generalization ability and accuracy in the training set, and 
embodies the structural risk minimization principle [8]. Parameter C measures the 
trade-off between generalization ability and accuracy in the training data, and 
parameter ε defines the degree of tolerance to errors. To solve the problem stated 
above, it is more convenient to represent the problem in its dual form. For this 
purpose, a Lagrange function is constructed, and once applying saddle point 
conditions, it can be shown that the following solution is obtained [8]: 
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Here, αi and αi
* are the dual variables, and the expression K(xi,x) represents the 

inner product between Φ(xi) and Φ(x), which is known as the kernel function [8]. The 
existence of such a function allows us to obtain a solution for the original regression 
problem, without explicitly considering the transformation Φ(x) applied to the data. 
In our experiments we use radial basis functions (RBF) and linear kernel functions.  

 
Limited research has been conducted to investigate the ability of SVR for 

predicting different time series patterns. Experiments performed by Hansen et. al [9] 
compare SVR performance with 3 statistical methods (e.g. ARIMA) on predicting 9 
different patterns present in real world time series. Among other patterns, they tried 
trends, seasonality, cycles, and combinations of them. Their experiments show SVR 
models outperforming the other methods on 8 of the 9 patterns; particularly, they 
obtained very good results using SVR for extrapolating linear and non linear trends. 
Guajardo et al. [10] compared SVR with ARMAX models for predicting seasonal 
time series in a weekly sales forecasting domain for 5 different products. Their 
experiments show that SVR were slightly better than ARMAX models, succeeding 
in extrapolating seasonal patterns (without trends) with SVR.  
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2.2 Neural Networks 

Forecasting with non-recurrent NN may encompass prediction of a dependent 
variable ŷ from lagged realizations of the predictor variable t ny − , 1 or i explanatory 
variables ix of metric, ordinal or nominal scale as well as lagged realizations thereof, 

,i t nx − . Therefore, NNs offer large degrees of freedom towards the forecasting design, 
permitting explanatory or causal forecasting through estimation of a functional 
relationship of the form ( )1 2ˆ , ,..., zy f x x x= , as well as general transfer function 
models and simple time series prediction. Following, we present a brief introduction 
to modelling NN for time series prediction; a general discussion is given in [11, 12]. 

 
Forecasting time series with NN is generally based on modelling the network in 

analogy to a non-linear autoregressive AR(p) model [2, 13]. At a point in time t, a 
one-step ahead forecast 1ˆ +ty  is computed using p=n observations 11 ,,, +−− nttt yyy K  
from n preceding points in time t, t-1, t-2, …, t-n+1, with n denoting the number of 
input units of the NN. This models a time series prediction as of  

( )111 ,...,,ˆ
+−−+ = ntttt yyyfy  .  

The architecture of a feed-forward Multilayer Perceptron (MLP), a well 
researched NN paradigm, of arbitrary topology is displayed in figure 1.  
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Fig. 1.  Autoregressive MLP application to time series forecasting with a MLP of arbitrary topology, using 
n input neurons for observations in t, t-1, t-2, …, t-n-1, m hidden units, h output units for time periods t+1, 
t+2, …, t+h and a two layers of trainable weights. The bias is displayed within the units. 

Data is presented to the MLP as a sliding window over the time series 
observations. The task of the MLP is to model the underlying generator of the data 
during training, so that a valid forecast is made when the trained NN is subsequently 
presented with a new input vector value.  
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The network paradigm of MLP offers extensive degrees of freedom in modelling 

for prediction tasks. Structuring the degrees of freedom, each expert must decide 
upon the selection and sampling of datasets, the degrees of data preprocessing, the 
static architectural properties, the signal processing within nodes and the learning 
algorithm in order to achieve the design goal, characterized through the objective 
function or error function. For a detailed discussion of these issues and the ability of 
NN to forecast univariate time series, the reader is referred to [2]. 

3 Experiments and Results 

3.1 Description of the Artificial Time Series  

We evaluate a set of five artificial time series of monthly retail sales motivated from 
Pegel’s original classification, later extended by Gardner to incorporate degressive 
trends. Time series are composed of regular patterns of different forms of linear, 
progressive, degressive or regressive trends T, additively or multiplicatively 
combined with seasonality S, a constant level L and residual noise E. In addition, 
empirical time series are impacted by irregular patterns such as level shifts and 
pulses, which are disregarded. To evaluate the ability of different computational 
intelligence methods we create a set of benchmark time series for the most common 
regular time series patterns: linear trend and different forms of seasonality. 
Consequently, we create individual time series patterns and combine them 
accordingly, overlaying each with additive noise.  
 No  

Seasonality (E) 
Additive  

Seasonality (SA) 
Multiplicative 

Seasonality (SM) 
No  
Trend 
(L) 

 
Linear  
Trend 
(TL) 

Fig. 2. Basic time series patterns of artificial time according to the Pegels- and Gardner-
classification, combining Level, Trend and Seasonality with a medium additive noise level. 

In contrast to Pegel’s classification, a time series with multiplicative seasonality 
L+SM+E cannot display an increasing seasonality in the absence of level changes, it 
equals the pattern of additive seasonality and was consequently omitted from further 
analysis. Consequently, we create a set of five time series including a stationary time 
series L+E (E), seasonality without trend L+SA+E (SA), linear trend L+TL+E (TL), 
linear trend with additive seasonality L+TL+SA+E (TLSA) and linear trend with 
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multiplicative seasonality depending on the level of the time series L+TL*SM+E 
(TLSM). The residual error term follows a Gaussian distribution ( )2,0 σN  applying a 
medium level of noise 2 25σ = . The original time series data was taken from the 
experiments of [3] and represent monthly retail sales. All time series considered an 
additive noise term to allow an estimation of final forecasting accuracy in 
relationship to the original noise level. Each time series consists of 228 observations. 

3.2 Experimental Design 

This research investigates whether the five patterns described above can be 
accurately predicted with RBF SVR, Linear SVR and NN models. For each series, 
we defined a lag structure including the 13 previous observations as attributes for 
predicting the next series value (one period ahead prediction); thus, a total of 215 
data points remain to build and parameterize models. Data was sequentially divided 
into training, validation and test sets using 119, 48 and 48 observations respectively; 
training data is used to build the model, validation data for parameter selection 
purposes, and test data to evaluate the accuracy on a hold-out data set. All models are 
parameterized using only training and validation data, withholding all information in 
the test set (also for scaling etc.) to assure valid ex ante testing. Data was 
transformed only by applying linear scaling into a [-0.5, 0.5] interval to avoid 
saturation effects, using minimum and maximum values only from the training and 
validation data. No other preprocessing procedures such as deseasonalization or 
detrending were carried out. 
 

As mentioned in section 2.1., SVR models require setting of two parameters: C 
and ε. In addition, one needs to select an appropriate kernel function to carry out the 
transformation to a higher dimensional feature space. The RBF kernel function, 
which is the kernel function most widely utilized for regression (see e.g. [6, 14, 15]), 
requires the definition of an additional parameter σ. Our heuristic approach for RBF 
SVR parameter selection can be summarized as follows: 

 
- First, we determine starting values for the C and ε parameters on each time 

series by using the empirical rules proposed by Cherkassky and Ma [14], leading 
to E {C=0.67538; ε=0.020373}, SA {C=0.86224; ε=0.0056657}, 
TL {C=0.70709; ε=0.0043011}, TLSA {C=0.74641; ε=0.0064901} and 
TLSM {C=0.76968; ε=0.0064652}. 

- Second, we search for ‘good’ values of the RBF kernel parameter σ using the 
predetermined parameters C and ε, and evaluate 45 different alternatives for 
σ={0.001; 0.01; 0.03; 0.05; 0.08; 0.1; 0.3; 0.5; 0.8; 1; 1.3; 1.5; 1.8; 2; 2.3; 2.5; 
2.8; 3; 3.3; 3.5; 3.8; 4; 4.3; 4.5; 4.8; 5; 5.3; 5.5; 5.8; 6; 7; 8; 9; 10; 15; 20; 25; 50; 
80; 100; 200; 300; 400; 500; 1000}. The value of σ which generates the model 
with the lowest mean absolute error (MAE) in the validation set is defined as the 
base parameter for the kernel function. As result, we now have heuristic starting 
values for the three parameters of the SVR model, C’, ε’ and σ’. 

- Third, we define a grid around base parameters C’, ε’ and σ’, and retain the best 
combination of parameters to be the final values used in the SVR model. In our 
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experiments, we tried five different values for each parameter C, ε, σ (factors 
0.5, 0.75, 1, 1.25 and 1.5 over the initial values), thus creating a grid of 125 
possible parameter settings. The parameter candidate of the grid is selected by 
using the lowest MAE on the validation set as before. 

The scheme for Linear SVR is very similar, but without considering parameter σ. 
Thus, second step for base parameter σ is not carried out, and the third step involves 
only 25 different combinations for C and ε. (for additional details see [10]). 

For NN models, we used the backpropagation algorithm to train multiple 
candidates of multilayer perceptron (MLP) networks. The network topology was 
obtained using a grid search of different hidden nodes {0, 2,…, 20} and activation 
functions {sigmoid; tanh} with fixed number of input and output nodes, selecting the 
architecture with the lowest MAE on the validation set. The final model was 
initialized 20 times using an (13-8-1) architecture comprised of 13 input nodes, 8 
hidden nodes and a single output node for t+1 predictions, applying a sigmoid 
transfer function between the input and hidden layers, and a linear function between 
hidden and output layers. As for SVR models, we selected the network with the 
lowest validation mean absolute error (MAE) to calculate the test error results.  

3.3 Experimental Results and Discussion 

To evaluate our models we used the root mean squared error (RMSE), mean absolute 
error (MAE), and mean absolute percentage error (MAPE). Test set errors obtained 
using SVR and MLP models for each one of the five series analyzed in this paper are 
shown in Table 1. As can be seen from Table 1, RBF SVR has the best performance 
(denoted in bold) on a level time series superimposed with white noise (E) and 
additive seasonality (SA) patterns across all error measures. Linear SVR is the best 
method for predicting linear trend (TL) and linear trend with multiplicative 
seasonality patterns (TLSM), while MLPs provide best results for linear trends with 
additive seasonality (TLSA) pattern.  

Table 1. Forecasting accuracy on the test set for RBF and linear SVR models and MLP 

RBF SVR Linear SVR MLP Series 
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

Series E 4.670 3.776 1.387 5.036 4.108 1.496 4.851 3.946 1.264 
Series SA 4.746 3.739 0.039 6.961 5.637 0.058 5.787 4.766 0.048 
Series TL 11.501 10.408 0.046 5.876 4.811 0.021 6.058 4.966 0.022 
Series TLSA 21.267 17.678 0.075 7.915 6.280 0.028 7.083 5.878 0.027 
Series TLSM  14.758 10.842 0.043 7.927 6.305 0.029 7.673 6.454 0.030 
Sum 56.942 46.443 1.590 33.715 27.141 1.632 31.452 26.010 1.391 

 
Since we evaluated artificially constructed time series we can estimate the part of 

the forecasting errors caused by the artificially created noise, which due to its 
random nature cannot be forecasted. This permits an analysis to what extent each 
method was capable of separating noise from structure of varying complexity on the 
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unbiased error measure of MAE. In applying the true mean of the Gaussian residuals 
as an optimal forecast, we estimate a MAE of 3.801 as a lower bound forecast error 
for all time series on the test set. It becomes apparent, that RBF SVR exceeds even a 
‘perfect’ forecast for series E and SA, which can be attributed to the randomness of 
the data inherent in all ex ante evaluations of forecasting experiments. In contrast, 
RBF SVR significantly underperform on trended time series patterns, indicating 
inadequacies of the chosen kernel function. On the contrary, linear SVR shows a 
more robust prediction of all time series patterns. As the forecasts deviates only 
slightly from the lower bound in comparison to the level of the time series, as would 
be reflected in the MAPE, SVR with linear kernel functions may be considered a 
robust method in forecasting arbitrary time series patterns without preprocessing. 
Similarly, MLPs forecast all time series patterns robustly and without preprocessing 
with a comparative high accuracy close to linear SVR and the lower bound. 

In summarizing over all time series, applying an equal weight to each of the time 
series patterns, MLPs robustly outperform RBF SVR on all three error measures of 
MAE, MAPE and RMSE, whereas MLPs also moderately outperform linear SVR. 
This indicates that while particular kernel functions enable the SVR to outperform 
alternative parameterizations, MLPs or linear SVR may prove a more robust 
alternative in using a single method to forecast a set of time series of different 
patterns. In addition to these distance based error measures, we evaluate the relative 
performance by ranking each method by the individual error measure, provided in 
Table 2. 

Table 2. Forecasting accuracy measured by ranks of methods for each error measure 

 Rank by RMSE Rank by MAE Rank by MAPE 
 SVR 

RBF 
SVR 
linear

MLP SVR 
RBF 

SVR 
linear

MLP SVR 
RBF 

SVR 
linear 

MLP 

Series E 1 3 2 1 3 2 2 3 1 
Series SA 1 3 2 1 3 2 1 3 2 
Series TL 3 1 2 3 1 2 3 1 2 
Series TLSA 3 2 1 3 2 1 3 2 1 
Series TLSM  3 2 1 3 1 2 3 1 2 
Sum of Ranks 11 11 8 11 10 9 12 10 8 
 

The findings by ranked error measures confirm little differences between linear 
SVR and MLPs, with MLPs providing the best results for the limited test design 
provided across all error measures. SVR with RBF kernel, the most frequently used 
implementation in time series prediction with SVR to date, performs significantly 
worse than the other methods. 

As must be expected, different error measures identify different ‘best’ methods. 
In particular, RMSE and MAPE are considered to be biased error measures. To limit 
biases in the absence of a true objective function which could motivate the use of a 
particular error measure, we assume equal weight to each error and focus our 
conclusions on the MAE. To confirm the results of model accuracy from a statistical 
point of view, we performed a paired-samples t test on the absolute values of the 
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residuals over the test set data points. Results obtained show that differences between 
model errors are statistically significant when comparing RBF SVR to Linear SVR 
(t=7.337; df=239; p<0.001), and RBF SVR to NN (t=6.999; df=239; p<0.001), 
although not when comparing NN to Linear SVR (t=-0.989; df=239; p=0.324). This 
indicates that no significant difference in forecasting accuracy between the methods 
of linear SVR and MLP may be derived from these experiments. Consequently, we 
need to extend this evaluation on additional time series and variations of MLPs. 
Results suggest that RBF SVR can predict seasonal patterns but no trends, while 
linear SVR and NN seem to be able to extrapolate trend as well as seasonal patterns 
accurately and without preprocessing. By examining the residuals of the models, it 
can be observed that RBF SVR systematically underestimate hold-out sample 
observations for trended series, which corresponds to saturation effects.  

4 Conclusion 

We have examined the ability of RBF SVR, linear SVR and MLP for predicting five 
basic artificial time series patterns: stationary, seasonality, linear trends, linear trend 
with additive seasonality, and linear trend with multiplicative seasonality. Results 
obtained using multiple error measures show that while RBF SVR outperform other 
methods on non-trended data, they do not provide robust results across all patterns. 
For time series with trend components, linear SVR and MLP significantly 
outperform RBF SVR models, which severely underestimate out-of-sample 
observations, consistently lagging behind upward trends. RBF SVR errors have 
shown to be statistically significantly higher than linear SVR and NN errors. MLP 
demonstrate robust performance, providing the highest overall forecasting accuracy 
in across time series and different statistical error measures and rank based metrics. 
 

Our results confirm previous findings by Guajardo et. al [10], demonstrating 
accurate forecasts of seasonal time series without trends using RBF SVR, even 
outperforming established statistical methods such as ARIMAX. Also, they confirm 
results by Hansen et. al [9], who accurately predicted both linear and nonlinear 
trends using SVR, outperforming other methods such as ARIMA on several patterns. 
We assume that Hansen et al. also used linear kernels, as they did not fully document 
the kernel functions applied. A preliminary hypothesis for our poor results obtained 
with RBF SVR in extrapolating trend patterns lies in the linear nature of this trend. 
Previous publications report similar problems of closely related RBF-neural 
networks in predicting trends and instationary time series. While SVR with linear 
kernel functions and MLP with linear activation functions in the output units may be 
particularly suited to extrapolate linear trends, we did not conduct experiments as to 
their ability to extrapolate non-linear trends.  

 
These issues will be evaluated in an extended set of experiments currently under 

investigation by the authors, increasing the number of time series patterns and 
considering additional kinds of trend patterns, also evaluating results against 
established statistical forecasting methods as benchmarks. Additionally, we will 
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evaluate the influence of preprocessing procedures such as deseasonalization to 
evaluate alternative perspectives on the problem of extrapolating time series patterns.  
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