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Abstract - Various heuristic approaches have been proposed to 
limit design complexity and computing time in artificial neural 
network modelling, parameterisation and selection for time 
series prediction. However, no single approach demonstrates 
robust superiority on arbitrary datasets, causing additional 
decision problems and a trial-and-error approach to network 
modelling. To reflect this, we propose an extensive modelling 
approach exploiting available computational power to generate 
a multitude of models. This shifts the emphasis from evaluating 
different heuristic rules towards the valid and reliable selection 
of a single network architecture from a population of models, as 
common in business forecasting competitions. Experimental 
predictions are computed for the airline passenger data using 
variants of a multilayer perceptron trained with backproagation 
to minimize a mean squared error objective function, deriving a 
robust selection rule for superior prediction results. 

I. INTRODUCTION 

Artificial neural networks (ANN) have found increasing 
consideration in forecasting theory, leading to successful 
applications in time series and explanatory forecasting in 
various domains, including business and management science 
[1-4]. ANNs promise attractive features to business 
forecasting, being a data driven learning machine, permitting 
universal approximation [5] of arbitrary linear or nonlinear 
functions from examples without a priori assumptions on the 
model structure, often outperforming conventional statistical 
approaches of ARIMA- or exponential smoothing- methods. 

Despite their theoretical capabilities, NN are not an 
established forecasting method in business practice. 
Scepticism on NN persist through inconsistent research 
findings and pessimistic reports on their performance [6, 7], 
in part due to an trial-and-error modelling process [8] ANNs 
offer vast degrees of freedom in the modelling process, 
requiring a multitude of interdependent decisions on 
parameter-settings to assure valid and reliable performance. 
Since a complete enumeration of all parameter combinations 
induces high computation time, various heuristic modelling 
approaches, empirical guidelines, rules of thumb and simple 
tricks have been proposed since the late 1980s, suggesting 
alternative approaches to determine the architecture, guide 
the training process and select appropriate models to 
minimize the objective function [7, 9-12]. Unfortunately, no 
single heuristic has demonstrated its ability to deliver valid 
and reliable forecasts on arbitrary datasets as opposed to 
single experiments, therefore extending the decision problem 

of modelling ANNs instead of limiting it. Consequently, the 
task of modelling ANNs for a particular prediction problem 
is considered as much an art as a science [6, 7]. 

As no heuristic has demonstrated superior performance, we 
exploit available computational power to propose an 
extensive, simultaneous enumeration of the most influential 
modelling parameters of network size and depth, activation 
function, data sampling strategy, size of the data subsets, 
initialisation ranges of the trainable weights, learning 
parameters and early stopping schemes for a sufficient 
amount of initialisations while successively extending the 
input vector while analysing the network performance. The 
large amount and variety of models simulated shifts the 
emphasis from determining sound heuristics to limit 
modelling complexity towards a valid and reliable selection 
of a single superior model from a large population of 
competing, nonlinear autoregressive ANNs. Following, we 
employ a stepwise selection approach, effectively modelling 
a miniature forecasting competition motivated from the 
experience and publications in the domain of business 
forecasting [13, 14] to derive an adequate time series 
prediction applying a prototype simulator. 

Following a brief introduction to the use of MLPs in time 
series prediction and their degrees of freedom in modelling, 
section 3 assesses the extensive modelling and design 
decisions in MLP application. This is followed by our 
experimental design and results for the proposed selection 
approach on the airline passenger data in section 4. 
Conclusions are given in section 5. 

II. MODELING MULTILAYER PERCEPTRONS 
FOR TIME SERIES PREDICTION  

Forecasting with non-recurrent ANNs may encompass 
prediction of a dependent variable ŷ from lagged realisations 
of the predictor variable t ny − , 1 or i explanatory variables 

ix of metric, ordinal or nominal scale as well as lagged 
realisations thereof, ,i t nx − . Therefore, ANNs offer large 
degrees of freedom towards the forecasting design, 
permitting explanatory or causal forecasting through 
estimation of a functional relationship of the form  

( )1 2ˆ , ,..., zy f x x x=   , (1)

as well a general transfer function models and simple time 
series prediction. Following, we present a brief introduction 



to the degrees of freedom in modelling ANNs for time series 
prediction; a general discussion is given in [15-20]. 

Forecasting time series with ANN is generally based on 
modelling the network in analogy to an non-linear 
autoregressive AR(p) model [7, 9, 21].  At a point in time t, a 
one-step ahead forecast 1ˆ +ty  is computed using p=n 
observations 11 ,,, +−− nttt yyy …  from n preceding points in 
time t, t-1, t-2, …, t-n+1, with n denoting the number of input 
units of the ANN.  This models a time series prediction as of  

( )111 ,...,,ˆ +−−+ = ntttt yyyfy    . (2)

The architecture of a feed-forward MLP, a well researched 
ANN paradigm, of arbitrary topology is displayed in figure 1.  

 
Fig. 1.  Autoregressive MLP application to time series forecasting with a 

(4-4-1)-MLP, using n=4 input neurons for observations in t, t-1, t-2, t-3, four 
hidden units, one output neuron for time period t+1 and two layers of 20 

trainable weights [22] The bias node is not displayed. 

Data is presented to the MLP as a sliding window over the 
time series observations. The task of the MLP is to model the 
underlying generator of the data during training, so that a 
valid forecast is made when the trained ANN network is 
subsequently presented with a new input vector value [5].  

The network paradigm of MLP offers extensive degrees of 
freedom in modeling for prediction tasks. Structuring the 
degrees of freedom, each expert must decide upon the 
selection and sampling of datasets D, the degrees of data 
preprocessing P, the static architectural properties A, the 
signal processing within nodes U and the learning algorithm 
L in order to achieve the design goal, characterized through 
the objective function or error function O, calling for 
decisions upon ANN=[P, A, L, U, D, O].  

In data preprocessing, decisions upon correction of 
observations C, normalization N and scaling S must be made: 
P=[C, N, S]. The architectural properties or topology of the 
net is primarily determined through the size of the input 
vector NI corresponding to the number of input nodes and the 
length of the sliding window, the size NS and depth NL of the 
hidden layers through the number of layers and number of 
nodes in each hidden layer, and the length of the output 
vector determined through the number nodes NO in the output 

layer. In addition, the architecture is determined through the 
connectivity of the weight matrix K (fully or sparsely 
connected, shortcut connections etc.) and the activation 
strategy T (feedforward or with feedback), leading to 
A=[NI, NS, NL, NO, K, T]. The signal processing within nodes, 
is determined by input function FI (weighted sum, product, 
distance measures etc.), activation function FA (tanh, logistic, 
sin etc. with offsets, limits etc.) and output function FO 
(linear, winner takes all, softmax etc.), leading to 
U=[FI, FA, FO]. Decisions concerning the learning algorithm 
encompass the choice of learning algorithm G 
(backpropagation, one of its derivatives, higher order 
methods or heuristics etc.), the complete vector of learning 
parameters for each individual layer L and each different 
phase T of the learning process, PT,L, the procedure IP and 
number of initializations for each network IN and the choice 
of the stopping method for the selection of the best network 
solution B. In addition, the objective of the training process 
must be specified through the objective or function O, 
although often neglected in ANN theory and practice [22]. 
Consequently, the specification requires decisions upon 
MLP=[[C, N, S],[NI, NS, NL, K, T], [FI, FA, FO], [G, PT, IP, IN

, B], D, O], with each parameter decision interacting with 
single or multiple other parameter recommendations. 
Consequently, we recommend an extensive modelling 
approach based upon an enumeration of the relevant 
alternatives and a model selection as common practice in 
business forecasting competitions. Following, we discuss the 
modelling setup and selection process on the airline data. 

III. EXAUSTIVE MODELLING APPROACH FOR 
MULTILAYER PERCEPTRON APPLICATION 

A. Data Analysis  

We select the well known time series of monthly totals of 
airline passenger data, first proposed by Brown [23] and later 
extended by Box and Jenkins [12]. Fig. 2 gives an overview.  

 
Fig. 2.  Monthly airline passengers in thousands  

The dataset has been repeatedly analyzed [4, 24-26] and may 
serve as a benchmark in ANN forecasting. The data consist 
of 12 years of monthly values from 1949 to 1960, leading to 
132 observations. The time series requires no data cleansing 



regarding structural breaks, correction of outliers, pulses or 
level shifts due to temporal external shocks etc. As the 
analysis of the linear autocorrelations in the lag structure 
reveals a strong instationarity and seasonality in the time 
series, we analyze the partial linear autocorrelation 
coefficients of the integrated time series, as shown in fig. 3. 

 
Fig. 3.  Partial autocorrelation function of first order integrated time series of 

airline passenger data for lags t-1 unto t-28 

We identify significant partial linear autocorrelations at lags 
t-1, 2, 4, 6, 8, 9, 10, 12, 14 of the integrated time series, with 
the most dominant autocorrelations at t-1, 8, 10, 12. These 
may serve as a starting point in ANN modeling to determine 
non-linear lag structures, following a stepwise extension of 
the input vector from [t-1, 8, 10, 12] to [t-1,…, 14] for input 
node selection.  

B. Data Preprocessing 

Subsequent training, MLPs requires adequate preprocessing 
of data through scaling and differencing of input and output 
vectors. Although linear autocorrelation analysis suggests 
that first order differencing of the time series may assist the 
neural network in learning the relevant patterns [9, 21], we 
analyze the original un-integrated time series, despite an 
ongoing discussion on the necessity of integrating time series 
data for nonlinear NN models, especially considering the 
reconstruction of multiplicative, nonlinear effects such as 
seasonality in full scope [27, 28] versus the reduction of 
noise to highlight linear lag structures. 

Subsequent to transformation, we normalize the original 
data to avoid computational problems, to meet algorithm 
requirements and to facilitate network learning through 
speeding up of the training process [29]. As various scaling 
methods allow linear equidistant or statistical scaling in 
arbitrary intervals [7, 10], we select a simple normalisation of 

max

t
t

y
y

y h
′ =

+
   , (3)

to scale the data according to the natural origin of sales data 
[4]. In accordance with the selected activation function we 
scale input and output data from [114000; 622000] to the 
interval of [0; 1] including app. 50% headroom, h=378000, 
to avoid saturation effects of observations close to the 

asymptotic limits of the functions [15] and to account for 
trends in the test data outside the scale of training and 
validation data. To assure homogeneous scaling in all data 
sets we apply an external along channel normalization of the 
time series based upon the minimum and maximum values of 
training and validation data [7]. 

C. Architecture Selection and Node Processing 

Architecture selection of a MLP imposes large degrees of 
freedom in the dataset dependent modeling process. The 
number of input nodes corresponds to number of lagged 
observations in the input vector to discover the underlying 
pattern in the time series for future forecasts [7]. While too 
few nodes leave out relevant, exploitable information of the 
linear and nonlinear autoregressive lag-structure of the time 
series, too many nodes add uncorrelated noise obscuring 
input patterns. In lack of a superior heuristic to determine the 
optimum input vector for an arbitrary dataset [30] we follow 
an approach by Lattermacher and Fuller [12], exploiting 
information derived from the preliminary analysis of linear 
autoregressive (AR) components to select appropriate time 
lags for the input vector as in ARMA and ARIMA modelling 
[12, 20], consequently determining the input nodes. As a 
result, we model nonlinear AR-ANNs, distinct from a 
conventional Box-Jenkins ARIMA approach due to 
nonlinearities in the AR-terms and omitting MA-terms [31, 
32]. We commence model building with the linear AR-lags 
determined in the data analysis and successively extend the 
input vector by including less relevant autocorrelation-lags 
until all past observations from lags t-1,…,t-14 are used. 

While the number of input nodes is pre-determined 
through variable selection and data structure, the number of 
output nodes NO in the output layer is determined by the 
forecasting horizon of the time series forecasting problem. 
For a t+n prediction of n steps ahead, with n>1, two 
approaches are feasible. For forecasting horizons t+n, with 
n>1, we may model an MLP using one output node to model 
iterative t+1 step ahead forecasts, successively using 
predictions as inputs for subsequent forecasting horizons as 
in conventional ARIMA prediction. Alternatively, we may 
forecast t+1,…,t+n values directly using a multiple-step-
ahead forecasting architecture of n output units as proposed 
by [22]. Following, we limit our evaluation to a t+1 one step 
ahead forecast due to the nature of the prediction problem. 

The number of hidden layers and corresponding hidden 
nodes in each layer is determined using an extensive 
enumeration, evaluating every combination of l=1,…,3 
hidden layers and a maximum of n=1,…,18 hidden neurons, 
applying a step size of 2 nodes and limiting the structure of  
multi-layered ANNs to equal sized successive layers, to limit 
modeling complexity with regard to the scarce data. 

Information processing functions within nodes are set 
homogeneously based upon experience and empirical 
evidence. We considered the summation as the input 
function, a linear output function and the hyperbolic tangent 



(tanh) as a nonlinear activation function in all hidden and 
output nodes, due to advantages in error propagating 
behavior [33]. The bias in each node is modeled as an on 
neuron connected to all nodes in all hidden and output layers 
with trainable weights. 

Generally, we consider only fully connected feed forward 
architectures - no recurrent, sparsely connected networks or 
networks with shortcut connections are evaluated. 

D. Training Process  

Heteroassociative training of a MLP is the task of adjusting 
the weights of the links ijw  between units j and adjusting 
their thresholds to minimize the error jδ  between the actual 
and desired system behaviour [16] using various training 
algorithms for supervised online-training. We apply a simple 
derivative of the standard backpropagation gradient descent 
algorithm, applying a stepwise reduction of learning rate 
without momentum term to assure robust minimization of the 
objective function and minimizing a standard objective 
function of mean squared error (MSE), despite its theoretical 
and practical limitations [34] and the importance of selecting 
appropriate error metrics [32], modelling the conditional 
distribution of the output variables similar to statistical 
regression problems.  

Within the learning process, we evaluate various 
combinations of different learning rates, { }0.85;0.4η = , and 
cooling rates for their stepwise reduction of { }0.95;0.98ϖ =  
per epoch, deriving a variety of alternative learning schemes. 
Each network topology is trained for up to 150000 iterations 
with the weight configuration causing the lowest MSE on the 
validation set saved for future use. To limit computation 
time, we apply an early stopping paradigm, evaluating the 
relative reduction of the network error in percent after every 
epoch to a 0.001% threshold for 13000 iterations. To account 
for random initialisation of the connection weights, we 
initialise each MLP 15 times prior to training. No additional 
heuristic pruning or growing algorithms are applied. 

Due to changing input vector sizes the overall number of 
patterns in the dataset may vary. We divide the dataset into 
three distinct sub-samples of a training set to parameterize 
the weights, a validation to guide early stopping and prevent 
overfitting and a test set to evaluate generalization on a hold-
out set. Various subsample ratios are evaluated, leaving the 
test set constant through all experiments.  

E. Model Evaluation and Selection 

Following the training of various architectures a single model 
must be selected from all generated models for the final 
prediction. In accordance with objective function and final 
evaluation criteria of MSE, we select the model with the 
lowest MSE on the validation data set within the model group 
with the optimum modelling variant over all experiments. 
This approach exceeds the conventional pick-the-best 
approach of selecting the ANN architecture with the lowest 
validation error regardless of training error, variance of 

training and validation error as a measure of robustness of 
parameterization and potential generalisation within different 
initialisations. Our motivation for this approach is 
exemplified and evaluated in the following empirical 
experiment. 

IV. SIMULATION EXPERIMENT  

A. Experiment Structure 

We evaluate a total of 14400 ANNs as variations of selected 
modelling parameters. To automate this extensive experiment 
we apply NeuroLab, a prototype ANN simulator developed 
within our research group for extensive or complete 
enumeration in ANN time series competitions. Each of the 36 
architectures is initialised 15 times to account for randomized 
starting weights. In combination, we evaluate 4 variants of 
initialisation ranges, 3 variants of data splitting between 
training and validation set and 2 variants of backpropagation 
learning schemes. The networks were trained applying early 
stopping in 13716 cases if no error decrease of 0.01% in 300 
epochs of 96 iterations took place, leading to a median of 
63960 iterations or 666 epochs, with the final network 
parameters saved after a median of 24960 iterations or 260 
epochs. 

Total computation time was 19 hours on a Pentium IV, 
2400 MHz, 1GB RAM, with an average time of 5 seconds for 
parameterization of the network and saving all training 
errors, results and parameters to completely reevaluate the 
experiment at any time. Considering the overall computation 
time, saving data and regular compression of the database of 
1GB paralleled the time of actual experimental calculations.  

B. Experimental Results 

We analyze the results of all 14400 experiments regarding 
their performance on all data sets. A selection of results 
ranked by validation error presented in Tab. 1. 

Tab. 1. Errors on all data sets by ANN topology ranked by validation error 
Data Set Errors  Rank by 

validation error Training Validation Test ANN ID 
overall lowest 0,009207 0,011455 0,017760  
overall highest 0,155513 0,146016 0,398628  

1st  0,010850 0,011455 0,043413 39 (3579) 
2nd 0,009732 0,012093 0,023367 10 (5873) 
… … … … … 

25th 0,009632 0,013650 0,025886 8 (919) 
… … … … … 

14400th 0,014504 0,146016 0,398628 33 (12226) 

According to early stopping we should select the ANN 
architecture with the lowest validation error for future 
applications. However, already the ANN ranked 2nd shows a 
significantly decreased test error, questioning the validity and 
reliability of the selection rule of lowest overall validation 
error. The ambiguity of the selection criteria becomes evident 
in plotting training, validation and test error in Fig. 3 
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Fig. 3. Plot of training, validation and test error for all ANNs 

Although displaying a general tendency of correlation 
between validation and test error, a large variance exists for 
low validation errors. This is supported by decreasing, 
significant correlation coefficients in an evaluation of all 
14400, the top 1000 and the top 100 ANNs ranked by 
validation error in Tab. 2. 

Tab. 2. Correlation coefficients of datasets and data ranges 
 Correlation between datasets 

Data included Train - Validate Validate - Test Train - Test 
14400 ANNs 0,7786** 0,9750** 0,7686** 

top 1000 ANNs 0,2652** 0,0917** 0,4204** 
top 100 ANNs 0,2067** 0,1276** 0,4004** 

The ability of generalisation through positive correlations 
between validation and test error within all ANNs does not 
apply for a stratified subsample of the top performing ANNs. 
For further analysis, we visualise the top percentile in an s-
diagram in Fig. 4, sorting ANNs by validation error to graph 
the ranked training, validation and test-error to show 
performance, variance and correlation through symmetric 
development of in increasing error values in all sets. While 
the validation error must follow a steady upwards trend as the 
ranking criteria, we detect no similar pattern from the test-
error, indicating limited correlation between the selection 
criteria of a minimum validation and test error. In addition, 
the graph highlights significant variance within the top 
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Fig. 4. S-Diagram of top percentile of ANNs ranked by validation error  

percentile of ranked validation error, questioning the 
selection criteria of validation error further. Consequently, 
we have to extend our selection criteria to determine a 
network architecture capable of robust generalization from a 
single minimum validation error to limit variance in the test 
error through incorporation of additional selection rules in a 
stepwise model selection process. 

C. Experimental Model Selection 

In order to structure the ANN selection process to allow 
robust selection of a single ANN architecture, we evaluate 
the performance of each individual modelling variant within 
its group, in order to identify variants with superior 
performance through lower errors or lower variance of errors 
over all experiments. If dominant variants are identified, we 
combine each chosen variant and selected the ANN with the 
lowest validation error within the group of the dominant 
variant-combination. In order to analyse the sensitivity of 
each variant, we evaluate all groups of parameter variations 
for minimum, maximum and mean error as well as variance 
for each training, validation and test-dataset to determine a 
superior combination. 

First, we evaluate four different initialisation ranges of 
network weights {[-0.01; 0.01], [-0.33, 0.33], [-0.66, 0.66], 
[-1, 1]} of 3510 ANNs each for their impact on performance. 
Fig. 5 reveals the superiority of the Init3 [-0.66, 0.66] 
initialisation through complete dominance of all other 
initialisations through the lowest minimum, mean, maximum 
and variance of error within training and validation set. This 
appears consistent with the results on the test set, although 
the minimum values in all datasets originate from different 
network experiments. 
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Fig. 5. Box plot of minimum, maximum and mean plus and minus one 

standard deviation of errors for variants of initialisation range 

Following, we analyse the impact of different data samplings, 
assigning different partitions of data from to training and 
validation set, while leaving the test set size constant at 20%, 
equalling two years of observations. We evaluate three 
variants {[40%, 40%, 20%], [50%, 30%, 20%], [60%, 20%, 
20%]], with the results of non-normalized errors permitting 
only an analysis of the test error in Fig. 6. The test errors 
highlight the dominance of a [60%- 20%] distribution of 
training to validation data in dataset sample 3, offering the 



most information for parameterisation through a larger 
training set. Finally, we analyse the impact of different 
learning schemes, demonstrating limited impact on the results 
of mean error and variance, but with lower maximum values 
in dominant learning scheme 3, also displayed in Fig. 6.  

0

0,1

0,2

0,3

0,4

0,5

Test
Sample 1

Test
Sample 2

Test
Sample 3

[Dataset]

[E
rr

or
s]

0

0,1

0,2

0,3

0,4

0,5

Train
Learn 1

Train
Learn 3

Valid
Learn 1

Valid
Learn 3

Test
Learn 1

Test
Learn 3

[Dataset]

[E
rr

or
s]

 
Fig. 6. Box plot of minimum, maximum and mean plus and minus one 

standard deviation of errors for variants of data sampling (left) and learning 
parameters for backpropagation (right) 

Finally, we analyse the topologies of 10 single, 18 double and 
8 three-hidden-layered network architectures regarding their 
mean errors on training, validation and test set over all 360 
experiments each to identify superior architectures for the 
dataset. The results in Fig. 7 show a superior group of single 
layer architectures with 14 (ANN8), 16 (ANN9) and 18 
(ANN10) hidden nodes, displaying low validation and test 
errors and correlation. Generally, one-layered ANNs 
outperformed multi-layered architectures in or experiment. 
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Fig. 7. Mean training, validation and test errors by ANN topology  

over all 360 variants each 

Combining all evaluated modelling variants, we select the 
ANN with the lowest validation error within the combined 
group. The ranked errors of the selected subgroup for all 15 
initializations are displayed in Fig. 8. 
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Fig. 8. S-diagram of training, validation and test error over 15 initializations 

of selected ANN8 architecture ranked by validation error 

The ANN architectures show a consistent error development 
within the subgroup, supported by positive correlations of 
0,8778 between training and validation, 0,4475 between 
validation and test and 0,4762 between training and test set. 
Consequently, the selection of the ANN with the lowest 
validation error may be considered robust, although not 
optimal.  

Of all evaluated architectures, we selected ANN 919, a 14-
14-1 architecture of variant 8 for it lowest validation error. 
The MLP was trained for 150000 iterations, without reaching 
the early stopping criteria. As determined by the selected 
variants, the ANN was trained using a starting learning rate 
of 0.85 and decreasing by 0.98 every epoch for 50000 
iterations, followed by a starting learning rate of 0.4 and 
decreasing by 0.99 for 100.000 iterations, an initialization 
range of [-0.66, 0.66] and a split of the dataset of 
[60%, 20%, 20%], computing errors of [0.009632; 0.001365; 
0.025886] on training, validation and test dataset. The 
network’s t+1 output are shown in Fig. 9.  

 
Fig. 9. Time series and predictions of ANN 919  

on training, validation and test data set 

However, the ANN selected does not represent the ANN with 
lowest test error used as the routine measure of generalization 
ability, as seen in Tab. 1. In fact, the ANN is ranked 9th on 
training, 25th on validation and 102nd on generalization error, 
and with single realizations of the same architecture in 
different variants achieving lower ranks. Therefore the 
selection strategy does achieve a “pick-best”-solution but 
aims to assure a robust selection process to derive valid and 
reliable results. 



V. CONCLUSION 

We proposed a complete or extensive enumeration of ANNs, 
avoiding problems in selecting acceptable heuristics and trial-
and-error modelling approaches. However, the selection of a 
single ANN architecture based on naïve selection rules such 
as the lowest error on the validation dataset may lead to 
inconsistent, invalid and unreliable results. Consequently, we 
derive a more robust selection approach, evaluating a variety 
of modelling variants and limiting the ANN selection to the 
combined group of dominant variants.  

Due to software limitations in the prototype simulator, we 
had to initial limit our experimental design, achieving only an 
extensive enumeration of the most relevant parameters. 
Further extensions of the software will incorporate additional 
modelling degrees of freedom and heuristics to derive robust 
results for a simultaneous enumeration of all possible variants 
over a variety of time series and benchmark datasets.  
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