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Abstract - Artificial neural networks in time series prediction 
generally minimise a symmetric statistical error, such as the 
sum of squared errors, to learn relationships from the presented 
data. However, applications in business elucidate that real 
forecastine rrroblems contain non-svmmetric errors. The costs 

by an experimental evaluation of neural networks trained 
with asymmetric cost functions in competition with expert 
sofhvare-systems for time series prediction in section 4. 
Conc~usions are given in section 5 .  

- .  

11. NEURAL NETWORKS FOR WHITE-NOISE arising from suboptimal business decisions based on over- 
versus underprediction are dissimilar for errors of identical 
magnitude. To reflect this, a set of asymmetric cost functions is TIME SERIES PREDICTION 
used as objective functions for neural network training, deriving 
suoerior forecasts even for white noise time series, some Forecasting time series with non-recurrent artificial neural 
experimental results are computed using a multilayer networks (A") is generally based on modelling the network 
perceptron trained with various asymmetric cost functions, in analogy to an non-linear autoregressive AR(n) model [ 141. 
evaluating the performance in competition to conventional At a point in time I ,  a one-step ahead forecast j,,, is 
forecasting methods on a white noise time series extracted from computed using n observations y,, y,.,, ._ .  , y,.,,, from n 
the popular airline passenger data. preceding points in time I, I - / ,  1-2, ..., t -n+ / ,  with n denoting 

1. INTRODUCTION 

Artificial neural networks (ANN) have found 'increasing 
consideration in forecasting theory, leading to successful 
applications in time series and explanatory sales forecasting 
[5,19,22]. In management, forecasts are a prerequisite for all 
decisions based upon planning [Z]. Therefore, the quality of a 
forecast must he evaluated considering its ability to enhance 
the quality of the management decision - consequently using 
the monetary costs arising from decisions based on incorrect 
forecasts [ 181. These costs from over- and underprediction 
are typically not quadratic in form and frequently non- 
symmetric [IZ]. Although White noted the interdependence 
between the selection of the objective function and the 
underlying business decision in one of the first applications 
of neural networks for prediction [24], neural network theory 
and applications consistently focus on symmetric statistical 
error functions for training. Originating from modest research 
in non-quadratic error functions in neural network theory 
[5,16,21] and asymmetric costs for the ex post evaluation in 
prediction theory [1,12,23,9], a set of asymmetric cost 
functions as altemative objective functions for business 
applications was recently introduced to neural network 
training [ l  I]. In this paper, we analyse the efficiency of a 
linear asymmetric cost function in minimizing the actual 
error of a forecast decision, training a multilayer perceptron 
to find a cost efficient business decision for a stationary white 
noise time series. 

Following a brief introduction to the use of neural 
networks for time series prediction of white noise processes, 
section 3 assesses statistical error measures and asymmetric 
cost functions for neural network training. This is followed 

the number of input units of the ANN. This models a time 
series prediction of the form 

>,*I = ~ ( Y ,  ,.v ,.,,..., Y , ~ ~ + , ~  (1) 

The architecture of a feed-forward multilayer perceptron 
(MLP) of arbitrary topology is displayed in figure I .  The 
task of the MLP is to model the underlying generator of the 
data during training, so that a valid forecast is made when the 
trained network is subsequently presented with a new value 
for the input vector [ 5 ] .  Therefore the objective function used 
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Fig. 1. Neural Network application to time scrics forecasting with a 
(4-4-I)-MLP, using n=4 input n e w "  for observations in I. t - I .  1-2. 1-3, four 

hidden units, one output neuron for time period 1+1 and hvo layen of 20 
trainable weights 1221 The bias node is not displayed. 
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for ANN training determines the resulting system behaviour 
and performance. 

Following, we attempt to analyse the impact of altemative 
objective functions, i.e. asymmetric costs versus symmetric 
statistical errors, on the ex-post forecast performance. To 
control additional influences in the forecasting experiment 
we analyse a time series which is white noise. A white noise 
model represents a simple random model consisting of an 
overall level c and a random error component e,  which is 
uncorrelated from period to period [I41 

y, = c + e ,  . (2) 

Considering the structure of a stationary white-noise model, 
lacking any systematic pattem in the residuals of e,, it should 
prohibit one ANN to extract any underlying linear or 
nonlinear generator of the data and thus outperform 
competing ANNs or linear methods, ensuring an unbiased 
comparison of methods regardless of individual model 
performance. Experiencing random fluctuations, the ANN as 
other methods should predict the level c as the optimum 
predictor without overfitting to the training data. 

in. OBJECTIVE FUNCTIONS FOR NEURAL 
NETWORK TRAINING 

A. 

Training a MLP is the task of adjusting the weights of the 
links wv between units j and adjusting their thresholds to 
minimize the error 5, between the actual and desired system 
behaviour [I61 using various training algorithms for supervised 
online-training of a MLP. Gradient descent methods tradi- 
tionally minimize a modified sum of squared errors (SSE), 

Statistical Error Measures in Forecasting 

ever since the popular description of the hack-propagation 
algorithm by Rumelhart, Hinton and Williams [17]. The 
consistent use of the modified SSE in time series forecasting 
with ANN is motivated primarily by analytical simplicity 
[5,16] 'and the similarity of hetero associative neural network 
modelling to statistical regression, problems, modelling the 
conditional distribution of the output variables [5 ] .  

In time series point prediction, the single network output 
oP corresponds to the forecast j, of a network, the teaching 
input f p  represents the actual value of the observation y,  
and the forecast error e, represents the networks error 8, in 
the output-layer. The objective function in ANN training 

E = f ( t j , o j )  1 (4) 

determining the size of the error J j  in the output-layer, may 
therefore be interpreted as measuring the significance of an 
nverprediction or an underprediction for each point in time t 
or pattemp. For a business prediction, the objective function 

should.reflect the monetary significance in dependence of the 
underlying forecasting problem [ 161. 

Although all statistical error measures produce a value of 0 
for an optimal forecast and are symmetric about e, = 0, each 
error measure implies a different weight for a deviation of the 
forecast value from, the real value. Quadratic, cubic as other 
error measures of higher power penalize a forecast more for 
extreme deviations than for small ones [14]. In business 
applications, the errors arising from ' over- and 
underprediction are oflen considered to be not quadratic hut 
linear in form, implying the use of absolute instead of 
quadratic error measures, which assign identical weight to 
every error regardless of scale [3,4]. Consequently, selected 
authors have applied absolute error-measures to neural 
network training in time series prediction. Thiesing [2l] 

'oposes the In(cosh)-function as an approximation of the 
anmetric absolute error (AE) function. A comparison is 
ven in Fig.(Z). 
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'ig. 2. Symmctric s!alisticaI error functions for ANN-training including thc 
squared error SE[e), absolute error AE[e), absolutc cubed error ACE@) and 

the differcncc bctween the most two popular mcasurcs SE(ej and AE(e. 

Nonetheless, all error measures proposed apply symmetric 
error functions as an approximation of the true cost 
relationship. However, the cost arising in management 
forecasts are often not only non quadratic, but also non 
symmetric in form. Therefore a new set of error measures is 
introduced and applied directly to neural network training: 
asymmetric cost functions. 

B. 

In business management, all forecast are generated as a 
prerequisite of business decisions. Through decisions based 
on sub-optimal forecasts, costs arise to the decision maker in 

Asymmetric Cost Functions in Forecasting 
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choosing a inefficient alternative. Although the amount of 
costs will generally increase with the numerical magnitude of 
the errors, the sign of the error plays a significant role. 
Regarding business forecasts, the costs arising from over- 
and underprediction are frequently non symmetric and 
typically non quadratic in form [12,10]. In [I I] we introduced 
a linear asymmetric cost function originally developed by 
Granger for forecasts in inventory management problems 
[I31 to ANN training. The corresponding LINLIN cost 
function (LLC) yields: 

The LLC is linear to the left and right of 0. The parameters 
a and b give the slopes of the branches for each cost function 
and measure the costs of error for each stock keeping unit 
(SKU) difference between the forecast j l r h  and the actual 
value y,,, . The parameter a corresponds to an overpredition 
and the resulting stock-keeping costs while b relates to the 
costs of lost sales revenue for each underpredicted SKU. The 
shape of one asymmetric LLC as a valid linear approximation 
of a real cost function in inventory management is displayed 
in Fig. 3. 

For a # b these cost functions are non-symmetric about 0 
and are therefore called asymmetric cost functions. The 
degree of asymmetry is given by the ratio of a to b [9]. For 
a = b = 1 the LLC equals the statistical error measure AE. 
The linear form of the ACF represents constant marginal 
costs arising from the business decision. This is consistent 
with the analysis of business decision based on linear 
marginal costs and profits. 

nor, e 

'ig. 3. Empirical Asymmetric Cost Function showing cost arsing for over- 
and under-prediction, using a=$O.Ol and b=$1.50. 

Although a small number of linear, non-linear and mixed 
ACFs have been specified [1,15,9,8], most notably the 
LINEX-cost function by Varian [23] consisting of linear and 
an exponential branch, they do not relate directly to business 
decisions incorporating linear marginal costs and have not yet 
been applied to ANN-training. All cost-functions developed 
imply a fixed functional relationship between error and cost, 
disregarding dynamic developments in business decisions. 

Yang, Chan and King introduce a systematic extension to 
objective function classification, introducing dynamic non- 
symmetric margins for support vector regression [25,26]. An 
adaptation towards objective functions in ANN training is 
given in Table 1, allowing the classification of all symmetric 
statistical error functions and asymmetric cost functions 
previously developed. Variable objective functions with 
dynamic variation of costs through time and dependent on 
other variables are yet to be developed for ANN-training. 

Table 1. Classification of objective functions for neural network training 

Variability Symmetry 
Symmetric Non-symmetric 

Fixcd SE, AE, ACE LINLIN, U N E X  
statistical error functions asymmetric cost functions 

Variable 

objective functions objective functions 

Asymmetric transformations of the error function alter the 
error surface significantly, resulting in changes of slope and 
creating different local and global minima. Therefore, using 
gradient descent algorithms, different solutions are found 
minimizing cost functions instead of symmetric error 
functions, finding a cost minimum prediction for the 
underlying problem. These asymmetric cost functions (ACF) 
may be applied in ANN training using a simple 
generalisation of the error-term of the back-propagation rule 
and its derivatives, amending only the error calculation for 
the weight adaptation in the output layer [l I] using 

E ,  = C ( f p j , o p , )  (6) 

In case of non fully-differentiable cost functions, 
approximations of the actual cost function, the application of 
alternative training methods or global search methods may be 
required to allow network training [16,1 I]. 

1V. SIMULATION OF NEURAL NETWORKS USING 
ASYMMETRIC COST FUNCTIONS 

A. Experimental Time Series and Business Scenario 

Following, we conduct an experiment to evaluate the ability 
of a MLP to evolve a set of weights minimizing an LLC 
asymmetric cost function for a random, stationary time series. 
The experiment is computed using a white-noise time series 
extracted from the original monthly airline passenger data, 
introduced by Brown [7] and extended by Box and Jenkins 
[6]. In [14], the monthly values of the Brown data-set, dating 
from 01/1949 unto 12/1956, are de-trended and 
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deseasonalised using a X-12-ARIMA Census 11 
decomposition, leaving only the residuals. An analysis of the 
autocorrelations and partial autocorrelations confirms a 
stationary white noise model of the form (2) with c=124900 
and no data-pattern in the residuals e,. 

In order to specify the underlying costs arising from the 
decision process we require a suitable objective function. As 
no information on market prices, actual versus satisfied 
demand etc. exists for the historic data on airflight-tickets we 
propose a simple business model to exploit the airline data. 
An airline carrier needs to allocate planes of different sizes to 
match passenger demand of flights. We assume that flying 
with an empty seat is less costly than not selling a ticket due 
to lacking seats. This equals a higher marginal-profit than 
marginal costs, a prerequisite for most business transactions. 
Consequently, the costs b of underpredicting customer 
demand through lost sales-revenue are higher than those of 
overprediction a, b>a, disregarding fixed costs of the 
decision. This corresponds to a simple inventory model 
without backordering. We generate business forecasts based 
upon ordinary least-squares predictors and asymmetric cost 
predictors to decide the cost efficient amount of passenger 
seats provided for each month, assessing the ex-post 
performance. In order to generalise findings we calculate 
results for two ratios of asymmetry a/b, although ratios with 
b<a seem implausible from a strategic business perspective. 

B. Experimental Design of Forecasting Methods 

A small sample of n=96 observations is split into three 
consecutive datasets, using 72 observations for the training-, 
12 for the validation- and 12 for the out-of sample test-set, 
resulting in 59, 12 and 12 predictable pattems in each set. 
All data was scaled from a range of 90000 to 110000 to [-1;1] 
for internal processing. We consider a fully connected MLP 
without shortcut connections as displayed in Fig. I ,  with a 
topology of 13 input, 12 hidden, 1 output node. All 
processing units use a summation as an input-, the tanh as a 
semilinear activation- and the identity- as an output function. 
Additionally, 1 bias unit models the thresholds for all units in 
the hidden and output layer. Three sets of networks were 
trained. Set ANNs was trained on minimizing the symmetric 
SE, set ANNcl was trained minimizing an asymmetric cost 

function with the parameters (a=$O.OOl;b=$I.OO) for LLCl 
and set ANNc2 (o=$16.00;b=$1.00) for LLC2 respectively 
(7). For better comparison of results, the right-hand side of 
our LLC-function was chosen to equal the absolute error 
function AE.  Each MLP was initialised and trained for five 
times to account for [-0.3;0.3] randomised starting weights. 
Training consisted of a maximum of 10000 epochs with a 
validation after every epoch, applying early stopping if the 
validation error did not decrease for 1000 epochs. After 
training, the results for the best network, chosen on its 
performance on the validation set, as well as the average of 
all five networks are computed for all data-sets. Only the test- 
set-data is used to measure generalisation, applying a simple 
hold out method for cross-validation. No parameters were 
estimated using data from the test-set. 

As a standard benchmark in time series prediction, the 
Naive1 method, using last periods sales as a forecast is used 

Additionally we compute the results using the software 
Forecast Pro for exponential smoothing and ARxMA and 
Autobox for ARIMA intervention models. Each software 
selects appropriate models based upon statisitical testing and 
expert knowledge. Drawing upon the Tashman-Hoover 
tables [20] and the M-competition results [I41 they are 
considered benchmarks in time series prediction. All ANNs 
were simulated using Neuralworks Professional and distinct 
error function tables to bias the calculated standard error. 

C. Experimental Results on Asymmetric Costs 

Table 2 displays the results using mean error measures 
computed on each data-set to allow comparison between 
data-sets of varying length. The results are given in the form 
(training-set / validation-set / test-set) to allow interpretation. 
A descriptive performance measures of the ,B -service-level 
notes the amount of suppressed sales per dataset in relation to 
all demand. An asymmetric ex-post performance measure is 
calculated, denoting the ex post mean LINLIN costs (MLLC') 
resulting from a given forecast method. As the costs 
themselves used for training -and ex-post evaluation differ, 
those nets trained on an LLC-cost function are evaluated only 

Table 2. Enpcrimenral Results for Statistical Forceasling Mcthods and ANNs trained on minimiring linear Asymmetric Costs and Squared Error Mcasurcs 

Rank an test-sct Error Mcasures Servicc Lcvcl 
~ MSE(e MLLC2 e Belo MSE LLCl LLC2 
Nalvc I(random walk) 18.41 10.26/0.82 1.571 1.53i0.32 27.65/23.516.32 98.75%/98.78%199.74% 4 6 4 
Frccforc Professional ARlMAwithpulse 1.80/2.95/0.58 0.53/0.58/0.25 8.00/ 12.57i6.12 99.5856/99.54%/99.80% 2 4 3 
ForccastProXE ARIMA (0,O.O) 10.03i4.39/0.50 1.02/0.92/0.23 17.151 11.7i5.72 99.19%/99.27%/99.82% I 3 2 
ANNr trainedonSE, bcstnct(no.45) 10.80/4.48/0.68 0.96/0.77/0.16 20.54/ 12.3i9.67 99.23%199.38%/99.88% 3 5 6 
ANNstrainedonSE.averagcof5nets 10.91 /4.90/0.82 1.07/0.91 10.27 20.01 / 13.5/8.58 99.14%/99.28%/99.78% 4 3 5 
ANNcl lraincd on LLCI, bcst ncl(no.48) 18.30 / 9.05 / 8.47 0.40 / 0.17 / 0.003 99.68%/99.86%/100.0% 8 1 - 
ANNc, traincd on LLCI, avcrage o f 5  15.23 / 8.87 16.36 0.45 / 0.171 0.003 99.65%/99.81%/100.0% 5 1 - 
ANNci traincd on LLC2, bestnet ("0.54) 19.54 / 13.3 / 7.65 8.09 14.22 / 2.63 97.50% 197.54% / 97.89% 6 - 1 
ANN<* traincd on LLCZ, averagc of 5 ne1 22.60 / 12.5 / 8.29 I l .2/5.99/6.97 97.56%/97.87%/97.89% 7 - 3 
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upon the MLLC costs they were trained on. All other 
Methods are evaluated on both cost-measures LLCl and 
LLC2. The methods are ranked by performance for the mean 
SE (MSE) and the MLLC. 

Various results may he drawn from the experiment. As 
expected, the ANNs trained using the standard SE gives 
forecasts close to the white noise level c, displayed in Fig. 

Fig. 4. ANN traincd on minimizing the symmetric sum of squared error 
( S E )  to forccast monthly airlinc passcngen, showing the achtual ticket sales, 

thc ANN forecast and thc cx-post forecast crror measured by thc SE(e). 

The best ANNcl trained with the asymmetric LINLIN cost 
function LLCI, gives a superior forecast regarding the 
business objective, achieving the lowest mean costs on the 
test-data with 0.03. It exceeds all methods and clearly 
outperforms forecasts of ANN trained with the SSE criteria 
and the software expert systems. Analysing the behaviour of 
the forecast based upon the asymmetry of the costs function, 
the neural network ANNcl in Fig.5 raises its predictions in 
comparison to ANNs in Fig.4., to achieve a cost efficient 
forecast and a cost efficient inventory level, accounting for 
higher costs of underpredicition versus overprediction and 
therefore avoiding costly stockouts. This is also evident in an 
increased ,D -service-level of 100.00%. 
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Fig. 5. ANN trained on minimizing the asymmetric cost function LLCl to 
forecast monthly airline passengers, showing the achlal ticket sales, the ANN 

forecast and the ex-post forccast m o r  measured by the SE@). 

Altematively, the ANNcl trained on minimizing an 
asymmetric cost function with a ratio of b>a lowers its 
forecasts as seen in Fig.6, resulting in less overpredictions 
and more stock-outs, also corresponding to the asymmetric 
distribution of decision costs. 

Fig. 6. ANN trained on minimizing the asymmetric cost function LLC2 tc 
forceasl monthly airlinc passcngers, showing thc actual tickct sales, the AN 

forecast and the cx-post forccast enor measured by the SE@). 

Consequently, the neural network no longer predicts the 
expected mean c of the white noise function but instead 
produces a biased optimum predictor, as proposed by 
Grangers original work [IZ].This may be interpreted as 
finding a point on the conditional distributon of the optimal 
predictor depending on the distributions standard-deviation. 
For an inventory management problem, the network finds 
cost efficient invelltory level without the separate calculation 
of safety stocks. This reduces the complexity of the overall 
management process of stock control, calculating a cost 
efficient stock level directly from the forecasting method. 

Networks trained with cost functions show a significantly 
high MSE and a low MLLC, and vice versa. Performance on 
the cost measures is negatively correlated with the 
performance on squared error measures. Therefore, a MLP 
may be used successfully to minimize an arbitrary cost 
function distinct from the squared error paradigm. 
Additionally, all five networks in each set minimize the LLC 
or SE robustly, shown by the homogenous low performance 
measures over all nets in the set. 

The experiment further validates, that choosing an ANN or 
any altemative forecasting method through an ex-post 
comparison of the MSE or other symmetric error measures 
may lead to the selection of an inferior forecast method, 
regarding the actual cost situation and, consequently, 
suboptimal decisions. Therefore, cost of error measures 
should be applied to the ex post evaluation of real-world 
forecasting applications, regardless of the training objective. 
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V. CONCLUSION 

We have  examined ’ symmetric and asymmetric error 
functions as performance measures for neural network 
training. The restriction o n  using squared e,rror measures in 
neural network training may be motivated by  analytical 
simplicity, hut it leads to biased results regarding the final 
performance of forecasting methods. Asymmetric cost 
functions can capture the actual problem structure and  allow 
the robust minimization of relevant costs using standard 
multilayer perceptrons and training methods, similar to 
minimizing a n  arbitrary statistical error function. Our  
approach t o  train neural networks with asymmetric cost 
functions has a number of advantages. Minimizing a n  
asymmetric cost function allows the neural network to learn 
directly from actual cost functions, taking the model building 
process closer towards business reality. For instance, 
considerations of optimum service levels in inventory 
management may he incorporated within the forecasting 
process, leading directly t o  the forecast of a cost minimum 
stock level without further computations. 

However, the limitations and promises of using 
asymmetric cost functions with neural networks require 
systematic analysis. Future research may incorporate the 
modelling of dynamic carry-over-, spill-over-, threshold- and 
saturation-effects for exact asymmetric cost functions where 
applicable. In particular, verification on multiple time series, 
other network topologies and architectures is required, in 
order t o  evaluate current research results. 
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