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ABSTRACT 

Artificial neural network theory generally minimises a 
standard statistical error, such as the sum of squared 
errors, to learn relationships fiom the presented data. 
However, applications in business have shown that real 
forecasting problems require alternative error measures. 
Errors, identical in magnitude, cause different costs. To 
reflect this, a set of asymmetric cost functions is proposed 
as novel error functions for neural network training. 
Consequently, a neural network minimizes an asymmetric 
cost function to derive forecasts considered preeminent 
regarding the original problem. Some experimental results 
in forecasting a stationary time series using a multilayer 
perceptron trained with a linear asymmetric cost function 
are computed, evaluating the performance in competition 
to basic forecast methods using various error measures. 

1. INTRODUCTION 

Artificial neural networks have found increasing 
consideration in forecasting theory, leading to successful 
applications in time series and explanatory sales 
forecasting. [21,23] In management, forecasts are a 
prerequisite for all decisions based upon planning. [2] 
Therefore, the quality of a forecast must be evaluated 
considering its ability to enhance the quality of this 
decision. Consequently, the final evaluation of a methods 
performance in management need to be measured by the 
monetary costs arising fiom decisions based on incorrect 
forecasts. [20] These costs fiom over- and underprediction 
are typically not quadratic in form and frequently non- 
symmetric. [ l l]  For example, in medical inventory 
management the costs of over- or underpredicting the 
amount of needed blood-units of a specific blood group 
can result in highly asymmetric costs. Overprediction may 
cause inventory-holding costs while underprediction may 
be fatal. Modest research has been conducted in none- 
quadratic error functions for neural network training 
[6,18,22,14] or asymmetric costs for the ex post evaluation 
in prediction theory [1,11,24,9] However, neural network 
theory as traditional prediction theory focus on quadratic 

error functions and least-square predictors [1,16], implying 
a symmetric and quadratic cost relationship. In this paper, 
we propose a general asymmetric cost function to 
minimize the actual error of a forecast, training a 
multilayer perceptron of arbitrary topology directly with it 
as a novel error function to find a cost efficient forecast. 

Following a brief introduction to the use of neural 
networks for time-series forecasting, section 3 assesses 
squared errors and alternative statistical error measures for 
neural network training. Section 4 introduces asymmetric 
cost functions to neural network training, providing a 
formal integration into the back-propagation learning 
algorithm. This is followed by an experimental evaluation 
of a neural network trained with an asymmetric cost 
function versus basic methods for time-series prediction in 
section 5. Conclusions are given in section 6. 

2. NEURAL NETWORKS FOR TIME 
SERIES PREDICTION 

Artificial neural networks (ANN) offer great flexibility in 
modelling quantitative forecasting methods. Although 
error measures play an equally important role in 
explanatory forecasting, modelling causal relationships of 
variables or between multiple time series [22], this first 
analysis is limited to time-series point predictions with 
neural networks. Therefore, a variable jjt+h is predicted 
using only previous observations of the same variable y I ,  
interpreting the time t as the only independent variable.[l6] 

Following, we consider a feed-forward multilayer 
perceptron (MLP) of an arbitrary topology; for the impact 
of altemative network architectures on time series 
prediction see &off [5] or Zimmerer [26]. At a point in 
time t (t=l, ...,q, a one-step ahead forecast j,+l is 
computed using n observations Y ~ , ~ , - ~ , K  , Y ~ - ~ + ,  fiom n 
preceding points in time t, t-I, t-2, ..., t-n+l, with n 
@ = I ,  ..., N) denoting the number of input units. This 
models a time-series prediction in analogy to an non-linear 
autoregressive AR(n) model [16] of the form 

Pt+1 = f(Yt,Yt-l,...,Yf-n+,) - (1) 
A network architecture is displayed in figure 1. The task of 
the MLP is to model the underlying generator of the data 
during training, so that a valid forecast is made when the 
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trained network is subsequently presented with a new 
value for the input vector. [6] 

Fig. 1. Neural Network application to time series forecasting 
with a (4-4-1) MLP, using n=4 input neurons for observations in 
2, 2-1, 2-2, 2-3, four hidden units, one output neuron for time 
period t+l and two layers of 20 trainable weights. [23] 

Unless a network is perfectly trained, these network 
outputs differ from the desired outputs. The network learns 
the underlying relationship through minimization of this 
difference on the training data. The real-world significance 
of these deviations depends on the application and is 
measured by an objective function, also called error 
function, whose output rates the quality of the networks 
response. [IS] As the specification and estimation of an 
objective function calls for an actual application, we 
consider alternative error functions for sales predictions in 
inventory management. 

In forecasting with ANNs, as in prediction in general, 
error functions are applied in all phases of modelling, 
network selection and application. During modelling, 
errors measures are computed and minimised to estimate 
parameters fitting a forecasting method to the data, in 
neural network terminology referred to as training. After 
finding valid parameters, error measures are calculated to 
verify the ex post quality of a single method, to compare 
forecast results of different architectures of a method or to 
compare results of competing methods. During the 
application of a chosen method, error measures may act as 
tracking-signals for constant evaluation, model-adaptation 
or retraining. [20] Although error functions play a 
predominant role in neural network forecasting, standard 
statistical error measures are routinely used instead of the 
actual objective function. As the, training of a network 
determines its validity and reliability in forecasting, we 
focus the following analysis on the use of error measures 
as objective functions in ANN training. 

3. NEURAL NETWORK TRAINING USING 
STATISTICAL ERROR MEASURES 

3.1. Neural Network Training using Squared Errors 

Supervised online-training of a MLP may be achieved 
using various training methods. One commonly used class 
of algorithms consists of the back-propagation algorithm 
with its extensions using dynamic learning rates, 
momentum terms, weight decay, batch calculation etc. for 
enhanced performance regarding learning time and 
accuracy. [25,18] 

Training a M L P  with a back-propagation derivative is 
the task of adjusting the weights of the links wv between 
units j ( j=l ,  ..., .I) and adjusting their thresholds to achieve 
a desired system behaviour. [25,18] Generally, a pattern p 
(p= l ,  ..., P), consisting of n observations yr,yt-l ,..., yt-,,+, 
from n points in time r, r-1, r-2, ..., t -n+l ,  is presented to 
the input layer of n units and propagated forward. An error 
d of the network behaviour is calculated using a specific 
error function, measuring the difference between the 
desired output t j  and the actual output oj of the network 
[18,19] Using derivatives AwV of the error, the weights 
wv are adjusted to minimize the error 6, , using gradient 
descent on a single-pattern error. [18] The error b j  of 
units in hidden layers is computed using the error of 
following layers, thus propagating the errors backwards 
through the network unto the input layer. This process is 
repeated for each pattern of a dataset and several epochs. 
[25] In time series point prediction, the single network 
output o p  corresponds to the forecast 9, of a network, 
while the teaching input r p  represents the actual value of 
the observation y, for each point in time r. The function 
determining the size of the error Si should reflect the 
significance of this difference depending on the underlying 
learning problem. [ 181 Back-propagation algorithms 
traditionally minimize a modified sum of squared errors 
(SSE), ever since the popular description of the original 
algorithm by Rumelhart, Hinton and Williams [ 191: 

The factor %, amending the standard SSE, is chosen for 
convenience in deviation. [18] Using this modified SSE, 
the calculation of the errors Si for the weight updates is 
computed using the equation 

[ (zPj - opj )f;(nezPj v j in the output layer 

showing the derivation of the modified SSE being directly 
embedded within the back-propagation algorithm. 
Consequently, most neural networks simulators offer only 
the modified SSE as an error function for back-propagation 
algorithms, although other error measures are feasible and 
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also occasionally calculated for the ex-post evaluation of 
network architectures. The consistent use of the modified 
SSE is motivated primarily by analytical simplicity [6], e.g. 
the advantages of easy differentiability and the 
independence of single errors, [18,25] and the similarity of 
hetero associative problems to statistical regression 
problems, modelling the conditional distribution of the 
output variables. [6] Therefore, the implications of using 
the SSE or alternative error measures for training require 
further discussion. 

2 -  

3.2. Alternative Error Measures for Neural Network 
Training 

Each error measure should be selected in accordance to the 
underlying problem structure, representing approximations 
of the objective function. Consequently, a variety of 
alternative statistical error measures have been developed 
for dissimilar purposes, all derived from a simple forecast 
error. The basic forecast error e,+, for a time period t+h 
( t=l ,  ..., T), with h (h=l ,  ..., H) denoting the number of time 
periods forecasted into the future, is calculated as the 
difference between the actual observation yr+,, and the 
forecast $r+h [11,16], using 

A 

= Y t + h  - Y t + h  . (4) 
From this basic error, alternative errors are derived, 

such as the absolute error (AE), with 

AEt+h = ( Y r + h  - y r + h l  ' 

= br+h - ?r+h >' ' 

(5) 

(6) 

or the squared error (SE), with 

If time series of observations exists within a time period 
I ( l , l+ l ,  ..., T), with T-1 observations and corresponding 
forecasts, the calculation of statistical error measures such 
as summed or mean errors is required, using the single 
errors of each observation. These are also applicable if 
more than one value is forecasted or errors are cumulated 
over numerous patterns, e.g. in batch back-propagation. 
Otherwise single errors apply to ANN learning. 

Although all single errors and resulting error measures 
produce a value of 0 for an optimal forecast and are 
symmetric about er+,, = 0 ,  each error measure implies a 
different weight for a deviation of the forecast value from 
the real value. Quadratic error measures, as the SSE, 
penalize a forecast more for extreme deviations than for 
small ones [16], while absolute error measures give 
identical weight to every error regardless of scale. [3,4] 
This effect may be seen in the difference of the SE and the 
AE displayed in Fig. 3. 

Choosing the SSE as a forecast error criterion implies 
the preference of many small deviations versus fewer large 
deviations. In the case of noisy data, this may lead to the 

selection of a method that forecasts the underlying time- 
series pattern less valid but is more robust against outliers. 
consequently, neural networks might be trained to 
anticipate outliers instead of generalizing from the actual 
patterns. In addition to overestimating large errors, with 
e>l, squared errors underestimate small errors, with ecZ. 
As data is often rescaled to intervals of [0;1] or [-1;1] to 
allow faster training, the errors are reduced in magnitude 
as well, underestimating the actual error and altering the 
error surface further. Applying the modified SSE (2) alters 
the objective function even further, implying a halved 
quadratic cost relationship.The error surface for a given 
dataset takes on a distinct form in dependence of the used 
error. Therefore the choice of error is crucial in parameter 
optimisation in ANN training with a local search algorithm 
such as gradient descent, as the performance of the 
algorithm depends on the slope and distribution of @e 
multidimensional error surface. [ 141 Steepening or 
flattening the error surface may result in different learning 
behaviour, converging to different local or global minima. 
The use of the modified SSE flattens the slope of the error 
through a monotonous transformation of the surface but 
without alteration of the local and global minima [ 181. 
Due to these properties, the modified SSE may not be a 
valid and reliable error measure, even for business 
applications with a symmetric, quadratic cost relationship. 
In inventory control, the errors arising from over- and 
underprediction are usually considered to be non quadratic 
but linear in form, implying the use of absolute error 
measures. Therefore, selected authors have proposed the 
use of alternative error-measures to neural network 
training. Thiesing proposes the ln(cosh)-function, similar 
to the symmetric AE error function in form but allowing 
full differentiation [22]. Hanson et al. [13] as Bishop [q 
propose the Minowski-R power metrics as an error 
function for a generalised training, allowing the use of the 
city block metric equalling the AE, the Euclidian metric 
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equalling SE and higher metrics through parameterisation. 
Reed proposes a piecewise linear error function with upper 
and lower tolerance limits with an error of zero within the 
limits [ 181. Nonetheless, all error measures proposed apply 
symmetric error functions as an approximation of the true 
cost relationship. However, the cost arising in 
management forecasts are often not only non quadratic, 
but also non symmetric in form. Therefore a new set of 
error measures is introduced and applied directly to neural 
network training: asymmetric cost functions. 

4. NEURAL NETWORK TRAINING USING 
ASYMMETRIC COST FUNCTIONS 

- 1 .  

15 

- 2 .  

4.1. Asymmetric Cost Functions in Forecasting 

W-ichapPll 

--. -w- , a A E C  

In business management, all forecast are generated as a 
prerequisite of business decisions. Through decisions 
based on sub optimal forecasts costs arise to the decision 
maker in choosing a wrong alternative. Although the 
amount of costs will generally increase with the numerical 
magnitude of the errors, the sign of the error plays a 
significant role. Regarding business forecasts, the costs 
arising from over- and underprediction are frequently non 
symmetric and typically non quadratic in form [11,10]. 

Granger develops an asymmetric linear cost function 
for the ex-post evaluation of a forecast in inventory 
management problems.[l2] The future sales Frth of a stock 
keeping unit (SKU) at a point in time t+h is predicted. The 
inventory is restocked exactly to this amount j,+,, , adding 
additional SKUs or taking SKUs out of stock in order to 
satisfy demand while minimising the costs of stock- 
keeping. [15] Evaluating the inventory decision after the 
forecast period t+h+l, three scenarios are feasible. If the 
forecast was exact, no costs arise. If the forecast was 
higher than actual sales, the units that are overstocked lead 
to inventory holding costs per SKU, denoted by a. If the 
forecast was lower than the actual sales, a stockout arises, 
resulting in costs of lost sales revenue per SKU, denoted 
by b. The resulting LINLJN cost function yields: 

The UNLZN cost function (LLC) is linear to the left and 
right of 0. The parameters a and b give the slopes of the 
branches for each cost function and measure the costs of 
error for each SKU difference between the forecast yrth 
and the actual value y,+,, . For a # b these cost functions 
are non-symmetric about 0 and are therefore called 
asymmetric cost functions or asymmetric loss functions. 
The degree of asymmetry depends on the ratio of a to b. 
[9] The names reflect the functional form of the branches, 
in analogy to Varian’s LJNEX loss function. [9] For a = b 
the LLC equals a linear symmetric cost function using a 

symmetric cost parameter. For a = b = 1 the LLC equals 
that the function of the statistical error measure AE. 
Therefore, symmetric cost functions as well as statistical 
error measures may be interpreted as special cases of the 
corresponding asymmetric cost functions. The shape of 
one particular asymmetric LINLIN cost function as a linear 
approximation of a cost function taken from a current 
project in inventory management, and used in the 
subsequent experiment, is given with the AE in Fig. 3. 

Matching the form of the cost function to the actual 
costs arising from the decisions, which are often linear but 
may take on various forms, is essential for valid decisions 
in stock control. Although other linear [l], quadratic 191 
and mixed [24,1,17,9,8] asymmetric cost functions have 
been specified, we limit our analysis to a simple LLC 
function as a valid approximation of the cost function in 
our inventory problem. The actual function and the 
parameters a and b are easily estimated through standard 
accounting procedures. 

In prediction theory, these asymmetric cost functions 
have been applied to estimate the ex post performance of a 
forecasting method as well as an ex post adjustment of the 
predictor. Granger [ 111 analyses LINLIN cost functions 
regarding optimal prediction under conditionally Gaussian 
processes. These results have been extended to 
unconditionally non-Gaussian processes and general loss 
functions. [9] In the following section, their use is 
extended towards a direct training of a neural network. 
Asymmetric transformations of the error function alter the 
error surface significantly, resulting in changes of slope 
and creating different local and global minima. Therefore 
different solutions may be found minimizing these cost 
functions with gradient descent, finding a cost minimum 
prediction for the underlying problem. 

2317 



4.2. Asymmetric Cost Functions in Back-Propagation 
Training 

In order to allow training of a neural network with an 
asymmetric cost function, the standard back-propagation 
algorithm is modified. Drawing upon equation (3) we 
derive a generalisation of the back-propagation rule, which 
is independent of a specific error function. Instead of (2) 
we allow the use of a general cost of error function 

E, = C(t,,O,) 3 (8) 
which permits the use of arbitrary cost functions. As we 
have seen above, symmetric cost functions and standard 
statistical error functions are special cases of an 
asymmetric cost function. This allows the selection of a 
problem specific performance measure for training 
through modification of the parameters of the general cost 
of error function. Modifying the subsequent equations in 
accordance with Rumelhart et al. [ 191 we receive 

If: ( netm )? 8$ wnk V j in a hidden layer 

which is a simple generalisation of the error term of the 
back-propagation rule. The importance of the cost function 
in the output layer for the weight adaptation within the 
network becomes evident. It is sufficient to amend the cost 
function calculated for the units in the output layer, as it is 
consequently propagated backwards through the net, 
leaving the equations for units in hidden layers unchanged. 

The choice of a semi linear activation function remains 
independent from the parameterisation of the cost 
function. Therefore, different activation functions may be 
chosen in order to enhance neural network performance. 

However, the cost function used in the output layer 
needs to be a fully differentiable function to allow the 
calculation of the error’s derivatives for training with 
gradient descent algorithms. This poses a potential 
problem, as the LZNLIiV cost functions are not fully 
maentiable. If no differentiable approximation of the 
actual cost function is known, Reed proposes the use of 
gradient estimates or the conjugate-directions method [ 181, 
calling for a modification within the ANN software 
simulator for computation of results. [22] Alternatively, 
global search methods as simulated annealing, threshold 
acceptance or genetic algorithms may be required. [ 181 

5. SIMULATION OF NEURAL NETWORKS 
USING ASYMMETRIC COST FUNCTIONS 

5.1. Experimental Design of Forecasting Methods 

We conduct an experiment to evaluate the ability of a 
MLP to evolve a set of weights to minimize an asymmetric 
cost function with back-propagation. As the experiment 

design plays an important rule for the reliability of the 
results it is described in detail. 

The experiment is computed using a noisy time series 
fiom a current project, forecasting weekly cigarette pack 
sales of one stock-keeping unit (SKU) at a vending 
machine. A sample of n=89 observations is split into 
consecutive datasets, using 64 observations for the . 
training-, 15 for the validation- and 14 for the test-set, 
resulting in 60,15 and 10 patterns in each set. 

We consider a fully connected MLP without shortcut 
connections as displayed in Fig. 1, with a topology of 4 
input, 4 hidden, 1 output and 1 bias unit to model the 
thresholds for all units in the hidden and output layer. All 
processing units use a summation as an input-function, the 
tanh as a semilinear activation function and the identity 
function as an output function. Two sets of networks were 
trained. One set was trained on minimizing the symmetric 
SSE, the other was trained minimizing a LmLLV 
asymmetric cost function. The parameters of the LLC were 
computed from the same project, resulting in a=E0,0144 
and b=&2,25 for equation (7). Each MLP was initialised 
and trained for five times to account for [-1;1] randomised 
starting weights. Training consisted of 2000 epochs with a 
validation after every epoch, using a hold out method for 
cross-validation. After training, the results for the best 
network, chosen on its performance on the validation set, 
as well as the average of all five networks are computed 
for the test-set-data to measure generalisation. 

For comparison, the basic forecasting methods Na’ive 
la, using last periods sales as a forecast, Ndive lx with a 
simple forecasting-strategy of always restocking to the 
maximum capacity of 60 SKUs, and variations of lSt order 
exponential smoothing are computed. [7] The a-parameter 
for exponential smoothing was computed minimizing the 
SSE, A E  and LmLIN on the training set respectively. 
Supplementary, we calculate exponential smoothing 
forecasts including safety stocks, for 2=2,0 and ~ 2 , 3 2 6  
standard deviations of the forecast errors, aiming at 97.8% 
and 99.0% service levels assuming a Gaussian 
distribution. No parameter was estimated using data from 
the test-set. The experiment was implemented using 
Neuralworks Professional II with an additional error 
function table to bias the calculated standard error. 

5.2. Experimental Results on Asymmetric Costs 

Table 1 displays the results using mean error measures 
computed on the test-set. Descriptive performance 
measures of the mean number of stockout units (MSU), 
giving the amount of suppressed sales per observation, and 
the number of overstocked units (MOU) are calculated. An 
asymmetric ex-post performance measure is calculated, 
denoting the ex post mean LINLIiV costs (MLLC) resulting 
from a given forecast method. The methods are ranked by 
performance for the mean SE (MSE) and the MLLC. 
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Table 1. Experimental Results for Statistical Forecasting Methods and A N N s  trained on Asymmetric Costs and Squared Error Measures 

10.19 

E a .  Smoothing minimizing SSE 1 5.30 40.30 1.90 3.40 = 7.68 

Naive la 
Exp. Smoothing minimizing SAE 1 ;::: I 4":;; I 9.02 1 4 1 f 1 112.90 

43.80 

ANN tramed on SSE, average of 5 nets 

Various results may be drawn from the experiment. The 
ANN trained with the asymmetric LINLRV cost function 
gives a superior forecast, achieving the lowest mean costs 
on the test-data with 0.13. It exceeds all methods using 
safety stocks and clearly outperforms single forecasts of 
A N N s  trained with the SSE criteria and exponential 
smoothing on any error measure. But, as the average of the 
five networks trained with LINLIN costs shows an inferior 
performance compared to exponential smoothing with 
safety stocks, these findings may not be generalised, 
However, all five networks minimize the asymmetric cost 
function robustly. A N N s  trained with LDVLlN costs show a 
significantly high MSE and vice versa. Therefore, a MLP 
may be used successfully to " i z e  an-arbitrary cost 
function distinct from the squared error paradigm. 

-For-stlY1N SE 1 

Actual Sales vs. ANN U 1  forecast rained on SSE 
using a UNUN Assymmric Cost Function far evaluaiion 

Fig. 4. ANN trained to forecast cigarette pack sales minimizing a 
SSE, showing the difference between actual sales and the ANN 
forecast measured by the asymmetric linear cost function. 

In regard to the asymmetry of the costs function, the 
neural network raises its predictions to achieve a cost 
efficient forecast and a cost efficient inventory level, 
avoiding costly stockouts. This may be seen in comparison 
of figures 4 and 5.  In addition, the ANN trained with an 
asymmetric cost function outperforms ANNs and 
exponential smoothing inventory procedures, finding a 

cost efficient inventory level without the separate 
calculation of safety stocks. From a business management 
perspective, this reduces the complexity of the overall 
management process of stock control, calculating a cost 
efficient stock level directly from the forecasting method. 

AcbralSalesvs.ANN44-1 IOfeustUainedon LlNLlNCoSB 
using .I LlNLlN Asymmetric Cost Funcllon forevaluation 

Fig. 5. ANN trained to minimize a LhVLhV cost function. The 
difference between actual sales and the forecast measured by the 
asymme~c cost function, barely noticeable near the x-axis. 

Those ANNs trained to minimize the SSE perform less 
well on the test-set than exponential smoothing methods. 
This, as some other inconsistencies in the results of the 
exponential smoothing methods, indicates a possibly 
inhomogeneous initial distribution of the data within sets, 
requiring additional testing. The ANNs trained on the SSE 
with additional safety stocks perform equally well as 
exponential smoothing methods with safety stocks. A 
general superiority of A N N s  over statistical 'methods 
cannot and shall not be derived from this experiment. 

The experiment further validates, that choosing a 
network or an alternative forecasting method through an 
ex-post comparison of the MSE or the M E  may lead to 
the selection of an inferior method, leading to sub optimal 
solutions regarding the actual cost situation. Therefore, 
cost of error measures should be applied to the ex post 
evaluation of real-world forecasting applications. 
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6. CONCLUSION 

We have examined symmetric and asymmetric error 
functions as performance measures for neural network 
training. The restriction on using squared error measures 
in neural network training may be motivated by analytical 
simplicity, but it leads to biased results regarding the final 
performance of forecasting methods. Asymmetric cost 
functions can capture the actual problem structure and 
allow the minimization of relevant costs using standard 
methods, similar to minimizing an arbitrary statistical error 
function. Standard multilayer perceptrons can minimize 
these asymmetric cost functions robustly, using a modified 
back-propagation training algorithm. Our approach to train 
neural networks with asymmetric cost functions has a 
number of advantages. Minimizing an asymmetric cost 
function allows the neural network to leam directly fi-om 
actual cost functions, taking the model building process 
closer towards business reality. For instance, 
considerations of optimum service levels in inventory 
management may be incorporated within the forecasting 
process, leading directly to the forecast of a cost minimum 
stock level without further computations. 

However, the limitations and promises of using 
asymmetric cost functions with neural networks require 
systematic analysis. Future research may incorporate the 
modelling of dynamic carry-over-, spill-over-, threshold- 
and saturation-effects for exact asymmetric cost functions 
where applicable. In particular, verification on multiple 
time-series, other network topologies and architectures is 
required, in order to evaluate current research results. 
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